Blog dedicado a cuentos, notas de interés, actividades políticas , sociales, historia, artes culinarias, fiestas patronales, astronomía, ciencia ficción, temas del Medio Ambiente ,y del acontecer Peruano y Mundial desde otro punto de vista ... Muy Personal y diferente!!!. *** Blog Fundado el 03 de Enero del 2008 ***
Hola amigos: A VUELO DE UN QUINDE EL BLOG., This image shows the galaxy Messier 94, dentro delanillobrillanteo anilloestelaralrededor deMessier94,están formando nuevas estrellasa un ritmo elevado, y muchasestrellas jóvenes ybrillantesestán presentesdentro de ella. La causa deesta regiónde formación de estrellasen formapeculiarmenteesprobable queuna onda de presiónque vahacia el exterior desdeel centro galáctico, comprimiendo elgas y el polvoen la zona exterior.La compresiónde losmedios materialesde que comiencegasacolapsarendensasnubes.Dentro de estasdensasnubes,la gravedad atraeel gasy el polvojuntoshasta que la temperaturay la presiónson lo suficientemente altospara las estrellasnazcan.
This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away.
Within the bright ring or starburst ring around Messier 94, new stars are forming at a high rate and many young, bright stars are present within it.
The cause of this peculiarly shaped star-forming region is likely a pressure wave going outwards from the galactic center, compressing the gas and dust in the outer región . A HubbleVista deStarburstgalaxiaMessier94. The compression of material means the gas starts to collapse into denser clouds. Inside these dense clouds, gravity pulls the gas and dust together until temperature and pressure are high enough for stars to be born.
Text credit: European Space Agency Image credit: ESA/NASA
Hola amigos: A VUELO DE UN QUINDE EL BLOG., NASA, a través de su Laboratorio de Propulsión a Chorro (JPL) en Pasadena, California, ha hecho un llamamiento a la industria americana de ideas innovadoras sobre cómo la agencia podría obtener un núcleo de naves espaciales basadas en propulsión avanzada solar eléctrica para apoyar al : Asteroide Redirect Robotic Mission (ARRM) .Parte del Asteroide Redirect Misión general de la NASA (ARM), esta misión utilizará una serie de tecnologías importantes para prepararse para una misión de exploración humana temprana en el espacio profundo - en concreto, el área alrededor de la luna conocida como espacio cislunar. La misión robótica también proporcionará las primeras muestras de asteroides de gran escala en el que llevar a cabo investigaciones y análisis para una mejor comprensión de la composición y naturaleza de estos cuerpos planetarios primordiales, dando lugar a un uso futuro de los recursos in-situ de los asteroides. La misión de ambos usos y amplía la capacidad de la NASA para detectar, caracterizar y mitigar la amenaza de estas rocas espaciales representan para nuestro planeta. La prioridad más alta de ARM es demostrar asequible y demostrar nuevas capacidades necesarias para las futuras misiones tripuladas a Marte."Estamos ansiosos por saber de las empresas estadounidenses sobre sus ideas para un diseño de la nave espacial que podría acomodar nuestros requisitos de propulsión eléctricos solares avanzados y tecnologías robóticas", dijo el Administrador Asociado de la NASA Robert Lightfoot. "También estamos interesados en qué tipo de alianzas comerciales, internacionales y académicas innovadoras oportunidades podrían ser práctico y ayudar a reducir los costos generales de la misión al mismo tiempo que demuestra las tecnologías que necesitamos para nuestro viaje a Marte."ARRM de la NASA se está formulando para llevar a cabo una serie de demostraciones tecnológicas necesarias para el viaje de la agencia a Marte, incluyendo el uso de una mejora de 20 veces en la capacidad de propulsión eléctrica solar espacio profundo estado de la técnica para moverse y maniobrar varias toneladas objetos. El objetivo del segmento de robótica de ARM es adquirir una roca de varias toneladas de un gran asteroide y redirigirlo a una órbita alrededor de nuestro equipo accesible luna, preparando el escenario para un futuro integrado el tripulación y las operaciones de vehículos robóticos en el espacio profundo.Nave espacial ARRM de la NASA tendrá que ser capaz de demostrar el apoyo de la alta energía solar propulsión eléctrica, con una potencia panel solar inicial de aproximadamente 50 kilovatios. El sistema de robótica captura planificada a bordo del vehículo pionero será capaz de adquirir una de 20 toneladas (o mayor) roca de hasta unos 19 pies (seis metros) de ancho de la superficie de un asteroide y luego devolverlo a una órbita astronauta accesible cerca de nuestra Luna. La nave espacial se está formulando para adaptarse a lo alto de una gran variedad de vehículos de lanzamiento - Sistema de Lanzamiento Espacial de la NASA o un cohete proporcionado comercialmente. La nave espacial tendrá que estar listo para su lanzamiento a finales de 2020.Mientras que en un gran asteroide, la nave espacial demostrará una técnica de deflexión "slow-push" planetaria asteroide defensa durante la misión. Esto utiliza la nave espacial y la atracción gravitatoria combinada de roca para intentar cambiar el curso de un asteroide.ARM reúne lo mejor de la ciencia de la NASA, la tecnología y los esfuerzos de exploración humanos para lograr varios objetivos importantes que son elementos críticos durante nuestro viaje a Marte.La reorientación y "aparcar" una gran roca de asteroides al alcance de los exploradores humanos y robóticos también proporcionará empresas comerciales estadounidenses sus primeras oportunidades para investigar la viabilidad de los asteroides de minería de metales preciosos y otros recursos.
Artists concept of NASA’s Asteroid Redirect Robotic Mission capturing an asteroid boulder before redirecting it to a astronaut-accessible orbit around Earth's moon.
Credits: NASA
NASA, through its Jet Propulsion Laboratory (JPL) in Pasadena, California, has issued a call to American industry for innovative ideas on how the agency could obtain a core advanced solar electric propulsion-based spacecraft to support the Asteroid Redirect Robotic Mission (ARRM).
Part of NASA's overall Asteroid Redirect Mission (ARM), this mission will use a number of important technologies to prepare for an early human exploration mission in deep space -- specifically, the area around the moon known as cislunar space. The robotic mission also will provide the first large-scale asteroid samples on which to conduct research and analysis for better understanding of the composition and nature of these primordial planetary bodies, leading to future use of in-situ resources from asteroids. The mission both uses and expands NASA’s ability to detect, characterize and mitigate the threat these space rocks pose to our home planet. The highest priority of ARM is to affordably demonstrate and prove new capabilities needed for future human missions to Mars.
"We're eager to hear from American companies on their ideas for a spacecraft design that could accommodate our advanced solar electric propulsion requirements and robotic technologies," said NASA Associate Administrator Robert Lightfoot. "We're also interested in what sorts of innovative commercial, international and academic partnerships opportunities might be practical and help reduce overall mission costs while still demonstrating the technologies we need for our journey to Mars."
NASA's ARRM is being formulated to perform a number of technology demonstrations needed for the agency's journey to Mars, including the use of a 20-fold improvement in state-of-the-art deep space solar electric propulsion capability to move and maneuver multi-ton objects. The objective of the robotic segment of ARM is to acquire a multi-ton boulder from a large asteroid and redirect it to a crew-accessible orbit around our moon, setting the stage for future integrated crewed and robotic vehicle operations in deep space.
NASA's ARRM spacecraft will need to be able to demonstrate support of high power solar electric propulsion, with initial solar array power of approximately 50 kilowatts. The robotics capture system planned aboard the pioneering vehicle will be capable of acquiring a 20 ton (or larger) boulder of up to about 19 feet (six meters) in width from an asteroid's surface and then returning it to an astronaut-accessible orbit near our moon. The spacecraft is being formulated to fit atop a variety of launch vehicles -- NASA's Space Launch System or a commercially provided rocket. The spacecraft will need to be ready for launch by the end of 2020.
While at a large asteroid, the spacecraft will demonstrate a "slow-push" planetary defense asteroid deflection technique during the mission. This uses the spacecraft and boulder's combined gravitational pull to attempt to change the course of an asteroid.
ARM brings together the best of NASA's science, technology and human exploration efforts to accomplish several important objectives that are critical elements during our journey to Mars.
Redirecting and "parking" a large asteroid boulder within reach of human and robotic explorers also will provide American commercial enterprises their first opportunities to investigate the viability of mining asteroids for precious metals and other resources.
NASA's Asteroid Redirect Mission and the robotic component of the overall mission will be the topic of an online Adobe Connect community update on Friday, Oct. 23 from 10 a.m. to 1 p.m. EDT. During the update, NASA leaders will share recent developments for the Asteroid Redirect Mission, including the recent spacecraft design study solicitation and the selection of the mission's Formulation Assessment and Support Team members. The Adobe Connect meeting is open to the public. Access to the online session will be available a few minutes before the start of the update at:
Hola amigos: A VUELO DE UN QUINDE EL BLOG., NASA's Cassini spacecraft muestraun océanoextraterrestreel miércoles 28de octubre,cuando vueladirectamente a través deuna nube deaerosolde hieloprocedente del Satélite Encelado de Saturno.La agenciallevará a cabo unateleconferenciade prensaa las 2 pmEDTel lunes 26de octubre,para discutir los planesparayresultados científicosesperadosdel sobrevuelohistórico.
Dramatic jets of ice, water vapor and organic compounds spray from the south pole of Saturn's moon Enceladus in this image captured by NASA's Cassini spacecraft in November 2009.
Credits: NASA/JPL-Caltech/Space Science Institute
NASA's Cassini spacecraft captured this view of Enceladus' active south polar region in October 2008.
Credits: NASA/JPL-Caltech/Space Science Institute
NASA's Cassini spacecraft will sample an extraterrestrial ocean on Wednesday, Oct. 28, when it flies directly through a plume of icy spray coming from Saturn's moon Enceladus. The agency will hold a news teleconference at 2 p.m. EDT on Monday, Oct. 26, to discuss plans for and anticipated science results from the historic flyby.
The teleconference participants are:
Curt Niebur, Cassini program scientist at NASA Headquarters in Washington
Earl Maize, Cassini project manager at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California
Linda Spilker, Cassini project scientist at JPL
To participate in the briefing, media must contact Laurie Cantillo at 202-358-1077 or laura.l.cantillo@nasa.gov no later than noon on Oct. 26. Questions also can be submitted during the briefing via social media using the hashtag #askNASA.
Audio of the event will stream live on the NASA website, where visitors also can find accompanying visuals. Event audio also will stream live online, with visuals, on Ustream.
The spacecraft will make its closest approach to Enceladus at 11:22 a.m. Wednesday at an altitude of 30 miles (49 kilometers) above the moon's south polar region. The encounter will be Cassini's deepest-ever dive through the Enceladus plume, and is expected to provide valuable data about activity in the global ocean stirring beneath the moon's frozen surface.
Cassini scientists are hopeful the flyby will provide insights into how much hydrothermal activity is occurring within Enceladus, and how this hot-water chemistry might impact the ocean’s potential habitability for simple forms of life. If the spacecraft’s ion and neutral mass spectrometer instrument (INMS) detects molecular hydrogen as it travels through the plume, scientists may get the measurements they need to answers these questions.
"Confirmation of molecular hydrogen in the plume would be an independent line of evidence that hydrothermal activity is taking place in the Enceladus ocean, on the seafloor," said Hunter Waite, INMS team lead at Southwest Research Institute in San Antonio. "The amount of hydrogen would reveal how much hydrothermal activity is going on."
Using Cassini's cosmic dust analyzer (CDA) instrument, scientists expect the flyby will lead to a better understanding of the chemistry of the plume. The low altitude of the encounter is, in part, intended to increase the spacecraft’s access to heavier, more massive molecules -- including organics -- than the spacecraft has observed during previous, higher altitude passes through the plume. The CDA instrument, which is capable of detecting up to 10,000 particles per second from the plume, also is expected to reveal how much material the plume is spraying from the moon's ocean into the space around Saturn.
"There's really no room for ambiguity," said Sascha Kempf, a CDA team co-investigator at the University of Colorado at Boulder. "The data will either match what our models are telling us about the rate at which the plume is producing material, or our concept of how the plume works needs additional thought."
Scientists also hope the flyby will help solve the mystery of whether the plume is comprised of column-like, individual jets, or sinuous, icy curtain eruptions -- or a combination of both.
Given the important astrobiology implications of these observations, the scientists caution that it will be several months before they are ready to present their detailed findings.
Cassini will acquire images of Enceladus both before and after the encounter. For the time of closest approach, the cameras' fields of view will drag across the surface. These observations are expected to capture some of the highest-resolution views ever of the icy south polar terrain, lit by reflected light from Saturn. Post-flyby processing will be used to remove blurring caused by the spacecraft's movement during exposure.
"Cassini truly has been a discovery machine for more than a decade," said Curt Niebur, Cassini program scientist at NASA Headquarters in Washington. "This incredible plunge through the Enceladus plume is an amazing opportunity for NASA and its international partners on the Cassini mission to ask, 'Can an icy ocean world host the ingredients for life?'"
The last of Cassini's three final close flybys of this icy moon, targeted at an altitude of 3,106 miles (4,999 kilometers) on Dec. 19, will examine how much heat is coming from the moon's interior. The closest-ever Enceladus flyby took place in October 2008 at an altitude of 16 miles (25 kilometers). Cassini flew closer to the moon's icy surface during that encounter, but passed through the plume at a much higher altitude than it will during the Oct. 28 flyby.
The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. JPL manages the mission for NASA's Science Mission Directorate in Washington.
An online toolkit for all three final Enceladus flybys is available at:
Hola amigos: A VUELO DE UN QUINDE EL BLOG., Por primera vez en casi 40 años, un cohete para personas, la NASA ha completado todos los pasos necesarios para eliminar una revisión crítica de diseño (CDR). Espacio sistema de lanzamiento de la agencia (SLS) es el primer vehículo diseñado para cumplir con los desafíos del viaje a Marte y el primer cohete de clase de exploración ya que el Saturno V.SLS será el más potente cohete jamás construido y, con la nave espacial Orion de la agencia, pondrá en marcha a Estados Unidos en una nueva era de la exploración a destinos más allá de la órbita de la Tierra. El CDR proporciona una mirada final en el diseño y desarrollo del vehículo de lanzamiento integrado antes de que comience la fabricación a gran escala."Hemos clavado el diseño del SLS, hemos completado con éxito la primera ronda de pruebas de motores y propulsores del cohete, y todos los componentes principales para el primer vuelo encontramos ahora en la producción", dijo Bill Hill, administrador asociado adjunto de la División de Desarrollo de Sistemas de Exploración de la NASA. "Ha habido desafíos, y habrá más adelante, pero esta revisión nos da la confianza de que estamos en el camino correcto para el primer vuelo de SLS y utilizarlo para extender la presencia humana permanente en el espacio profundo."El CDR examinó la primera de las tres configuraciones previstas para el cohete, denominado SLS Bloque 1. La configuración Bloque I tendrá un mínimo de 70 toneladas métricas (77 toneladas) capacidad de elevación y ser alimentado por Impulsores dobles y cuatro RS- 25 motores. La próxima actualización prevista del SLS, Block 1B, usaría un motor más potente etapa superior de exploración para las misiones más ambiciosas con 105 toneladas métricas (115 toneladas) capacidad de elevación. Bloque 2 agregará un par de refuerzos avanzada propulsante sólido o líquido para proporcionar una 130 toneladas métricas (143 toneladas) capacidad de elevación. En cada configuración, SLS seguirá utilizando la misma etapa de núcleo y cuatro RS-25 motores.El Programa SLS completó la revisión en julio, junto con una revisión independiente por la Junta de Revisión Permanente, que está compuesta por expertos experimentados de la NASA y de la industria que son independientes del programa. A lo largo de 11 semanas, 13 equipos - compuesto por ingenieros y expertos aeroespaciales a través de las agencias y de la industria - revisado más de 1.000 documentos de SLS y más de 150 GB de datos como parte del proceso de evaluación integral al Centro de Vuelo Espacial Marshall de la NASA en Huntsville, Alabama, donde SLS es administrado por la agencia.La Junta de Revisión Permanente examinó y evaluó la preparación del programa y confirmó el esfuerzo técnico está en camino de completar el desarrollo del sistema y cumplir con los requisitos de rendimiento del presupuesto y el calendario previsto.El programa informó a los resultados de la revisión en octubre al Consejo de Administración del Programa Agencia, dirigido por la NASA Administrador Asociado Robert Lightfoot, como el paso final en el proceso de CDR.Esta opinión es la última de las cuatro revisiones que examinan los conceptos y diseños. El siguiente paso para el programa es la certificación de diseño, que tendrá lugar en 2017 después de que se complete la fabricación, integración y pruebas. La certificación del diseño comparará el producto final real al diseño del cohete. La revisión final, la revisión de preparación de vuelo, se llevará a cabo justo antes de la fecha de la disposición 2018 de vuelo."Este es un paso importante en el diseño y la disposición de SLS", dijo John Honeycutt, director del programa SLS. "Nuestro equipo ha trabajado muy duro, y estamos avanzando con la construcción de este cohete. Estamos clasificatoria hardware, construcción de artículos de prueba estructurales, y haciendo un progreso real. "Las revisiones de diseño crítico para el SLS elementos individuales de la etapa central, propulsores y motores se completaron con éxito como parte de este hito. También como parte de los CDR, el programa llegó a la conclusión de la etapa central del cohete y el adaptador de la etapa de Vehículos de Lanzamiento seguirá siendo de color naranja, el color natural del aislamiento que cubrirá esos elementos, en lugar de pintado de blanco. El escenario principal, que se eleva a más de 200 pies de altura y con un diámetro de 27,6 pies, llevará hidrógeno líquido criogénico y combustible de oxígeno líquido para el cohete cuatro RS-25 motores.La nave espacial y cargas útiles integrado están a punto de concluir en su CDR. Hardware Vuelo actualmente está en producción para cada elemento. NASA se prepara para una segunda prueba de calificación para los impulsores de SLS, y artículos de prueba estructurales para el núcleo y las etapas superiores del cohete están ya sea completa o actualmente en producción. La NASA también ha completado recientemente la primera serie de pruebas en el desarrollo de los RS-25 motores.
Artist concept of the Block I configuration of NASA’s Space Launch System (SLS). The SLS Program has completed its critical design review, and the program has concluded that the core stage of the rocket will remain orange along with the Launch Vehicle Stage Adapter, which is the natural color of the insulation that will cover those elements.
Credits: NASA
Credits: NASA/MSFC
For the first time in almost 40 years, a NASA human-rated rocket has completed all steps needed to clear a critical design review (CDR). The agency’s Space Launch System (SLS) is the first vehicle designed to meet the challenges of the journey to Mars and the first exploration class rocket since the Saturn V.
SLS will be the most powerful rocket ever built and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. The CDR provided a final look at the design and development of the integrated launch vehicle before full-scale fabrication begins.
“We’ve nailed down the design of SLS, we’ve successfully completed the first round of testing of the rocket’s engines and boosters, and all the major components for the first flight are now in production,” said Bill Hill, deputy associate administrator of NASA’s Exploration Systems Development Division. “There have been challenges, and there will be more ahead, but this review gives us confidence that we are on the right track for the first flight of SLS and using it to extend permanent human presence into deep space.”
The CDR examined the first of three configurations planned for the rocket, referred to as SLS Block 1. The Block I configuration will have a minimum 70-metric-ton (77-ton) lift capability and be powered by twin boosters and four RS-25 engines. The next planned upgrade of SLS, Block 1B, would use a more powerful exploration upper stage for more ambitious missions with a 105-metric-ton (115-ton) lift capacity. Block 2 will add a pair of advanced solid or liquid propellant boosters to provide a 130-metric-ton (143-ton) lift capacity. In each configuration, SLS will continue to use the same core stage and four RS-25 engines.
The SLS Program completed the review in July, in conjunction with a separate review by the Standing Review Board, which is composed of seasoned experts from NASA and industry who are independent of the program. Throughout the course of 11 weeks, 13 teams – made up of senior engineers and aerospace experts across the agency and industry – reviewed more than 1,000 SLS documents and more than 150 GB of data as part of the comprehensive assessment process at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where SLS is managed for the agency.
The Standing Review Board reviewed and assessed the program’s readiness and confirmed the technical effort is on track to complete system development and meet performance requirements on budget and on schedule.
The program briefed the results of the review in October to the Agency Program Management Council, led by NASA Associate Administrator Robert Lightfoot, as the final step in the CDR process.
This review is the last of four reviews that examine concepts and designs. The next step for the program is design certification, which will take place in 2017 after manufacturing, integration and testing is complete. The design certification will compare the actual final product to the rocket’s design. The final review, the flight readiness review, will take place just prior to the 2018 flight readiness date.
“This is a major step in the design and readiness of SLS,” said John Honeycutt, SLS program manager. “Our team has worked extremely hard, and we are moving forward with building this rocket. We are qualifying hardware, building structural test articles, and making real progress.”
Critical design reviews for the individual SLS elements of the core stage, boosters and engines were completed successfully as part of this milestone. Also as part of the CDR, the program concluded the core stage of the rocket and Launch Vehicle Stage Adapter will remain orange, the natural color of the insulation that will cover those elements, instead of painted white. The core stage, towering more than 200 feet tall and with a diameter of 27.6 feet, will carry cryogenic liquid hydrogen and liquid oxygen fuel for the rocket’s four RS-25 engines.
The integrated spacecraft and payloads are nearing completion on their CDR. Flight hardware currently is in production for every element. NASA is preparing for a second qualification test for the SLS boosters, and structural test articles for the core and upper stages of the rocket are either completed or currently in production. NASA also recently completed the first developmental test series on the RS-25 engines.
Future program reviews will focus on SLS integration and flight readiness. For more information on SLS, visit:
Artist concept of the SLS Block 1 configuration.
For the first time in almost 40 years, a NASA human-rated rocket has completed all steps needed to clear a critical design review (CDR). The agency’s Space Launch System (SLS) is the first vehicle designed to meet the challenges of the journey to Mars and the first exploration class rocket since the Saturn V.
SLS will be the most powerful rocket ever built and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. Image Credit: NASA/MSFC (Artist concept updated Oct. 20, 2015)
Artist concept of NASA’s Space Launch System (SLS) Block 1 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. The first SLS mission -- Exploration Mission 1 -- will launch an uncrewed Orion spacecraft to a stable orbit beyond the moon and bring it back to Earth to demonstrate the integrated system performance of the SLS rocket and Orion spacecraft’s re-entry and landing prior to a crewed flight. Image credit: NASA/MSFC (Artist concept updated Oct. 20, 2015) › Read press release
NASA Study Shows That Common Coolants Contribute to Ozone Depletion
Estudio dela NASAmuestra queRefrigerantescomunescontribuyen al agotamiento delozono
A class of widely used chemical coolants known as hydrofluorocarbons (HFC) contributes to ozone depletion by a small but measurable amount, countering a decades-old assumption, according to a new NASA study.
The paper, published Oct. 22 in Geophysical Research Letters, a journal of the American Geophysical Union, is based on the results of a NASA-derived atmospheric chemistry climate model that projected the impacts of HFC gases on the atmosphere by the year 2050.
The ozone layer comprises a belt of ozone molecules located primarily in the lower stratosphere. It is responsible for absorbing most of the sun’s harmful ultraviolet radiation before it reaches Earth’s surface. Research in the 1990s showed that HFCs, which have replaced more powerful ozone-depleting chemical coolants in recent years, destroy a negligible amount of ozone. But that conclusion was reached by examining only the gases’ ability to break down ozone molecules through chemical reactions that take place following the breakdown of these molecules in the atmosphere.
The new study, which focused on the five types of HFCs expected to contribute the most to global warming in 2050, found that the gases indirectly contribute to ozone depletion. HFC emissions cause increased warming of the stratosphere, speeding up the chemical reactions that destroy ozone molecules, and they also decrease ozone levels in the tropics by accelerating the upward movement of ozone-poor air. According to the model, their impact is such that HFCs will cause a 0.035 percent decrease in ozone by 2050.
A global representation of the projected impacts of hydrofluorocarbons (HFC) on ozone levels at the various latitudes in 2050. The small but measurable amount of ozone loss is quantified in Dobson units, the most common unit for measuring ozone concentration. Over Earth’s surface, the ozone layer’s average thickness is about 300 Dobson units, or three millimeters.
Credits: NASA's Goddard Space Flight Center
HFCs’ contribution to ozone depletion is small compared to its predecessors. For example, trichlorofluoromethane, or CFC-11, a once common coolant that is no longer used, causes about 400 times more ozone depletion per unit mass than HFCs.
“We’re not suggesting HFCs are an existential threat to the ozone layer or to ozone hole recovery, but the impact isn’t zero as has been claimed,” said lead author Margaret Hurwitz, an atmospheric scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. “HFCs are, in fact, weak ozone-depleting substances.”
In the study, scientists also found that HFCs have a nearly linear impact on stratospheric temperature and ozone change. For example, reducing HFC emissions by 50 percent would decrease the ozone change by a comparable amount. Such a direct relationship will prove useful for evaluating the impacts of emerging HFCs, Hurwitz said. “We can provide policy makers with an estimate of the stratospheric impacts of new HFC gases.”
HFCs have been adopted as replacements for chlorofluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC) in refrigerators and in home and automobile air conditioners. CFCs were largely responsible for the ozone depletion first observed by scientists in the 1980s, most notably the ozone hole above Antarctica, which continues today. CFC molecules contain chlorine atoms, and each atom can destroy thousands of ozone molecules. Under the auspices of the Montreal Protocol treaty signed in 1987, CFCs were officially phased out of production worldwide in 2010.
While HCFCs contain chlorine atoms, they are less damaging to the ozone layer because they also contain hydrogen atoms, which causes them to break down in the atmosphere faster. HCFCs are currently being phased out in favor of HFCs, which do not contain chlorine.
The study adds nuance to the discussion around HFCs and their full impact on the ozone, according to David Fahey, a research physicist and director of the National Oceanic and Atmospheric Administration’s Earth Systems Research Laboratory, who was not involved in the study.
“What the paper demonstrates is that when you put this much of an infrared radiation-absorbing material in the stratosphere, even though it nominally does not destroy ozone in the same way that mainline ODSs [ozone-depleting substances] do, it’s going to make a difference—it’s going to start changing things,” Fahey said. “It adds a new dimension of thinking that stratospheric scientists need to be aware of as they discuss these matters with policy makers.”
While HFCs are only weak ozone-depleting substances, they are, like CFCs and HCFCs, strong greenhouse gases. If production trends continue, projections show that, by 2050, the amount of global warming by all HFCs could be as large as 20 percent that of carbon dioxide.
Work is also underway to analyze the HFC impacts on surface climate. “We’ve taken a major step towards understanding the effect of HFCs on the stratosphere and the ozone layer,” said Paul Newman, a co-author on the paper and chief scientist for Earth sciences at Goddard. “Our next step is to use a more complex type of model so we can begin to look at the impact of these compounds on land and ocean temperature, rainfall and sea ice.”
Hola amigos: A VUELO DE UN QUINDE EL BLOG., NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) misión está en fase de pruebas del medio ambiente en las instalaciones de Lockheed Martin Space Systems, cerca de Denver, Colorado. Osiris-Rex será la primera misión de Estados Unidos para volver muestras de un asteroide a la Tierra para su posterior estudio."Osiris-Rex está entrando en pruebas ambientales a tiempo, dentro del presupuesto y con las reservas de horario", dijo Mike Donnelly, director del proyecto OSIRIS-Rex en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. "Esto nos permite tener flexibilidad si surgen problemas durante los preparativos del lanzamiento final."Durante los próximos cinco meses, la nave será sometida a una serie de rigurosas pruebas que simulan el vacío, vibraciones y temperaturas extremas que experimentará durante toda la vida de su misión."Este es un momento emocionante para el programa ya que ahora tenemos una nave espacial completado y el equipo se pone de probar que, en cierto sentido, antes de que realmente volamos a asteroide Bennu", dijo Rich Kuhns, director del programa Osiris-Rex en Lockheed Martin Space Systems. "La fase de prueba del medio ambiente es un momento importante en la misión, ya que revelará cualquier problema con la nave y los instrumentos, mientras que aquí en la Tierra, antes de enviar al espacio profundo."En concreto, la nave Osiris-Rex se someterá a pruebas para simular el duro ambiente del espacio, incluyendo acústica, la separación y el choque de despliegue, la vibración y la interferencia electromagnética. La simulación concluye con una prueba en la que la nave y sus instrumentos se colocan en una cámara de vacío y pedalearon por las temperaturas frías y calientes extremas que se enfrentará durante su viaje a Bennu."Este hito marca el final de la etapa de diseño y montaje", dijo Dante Lauretta, investigador principal de Osiris-Rex de la Universidad de Arizona, Tucson. "Ahora pasamos a probar todo el sistema de vuelo sobre el rango de condiciones ambientales que será experimentado en el viaje a Bennu y la espalda. Esta fase es fundamental para el éxito de la misión, y estoy seguro de que hemos construido el sistema adecuado para el trabajo ".Osiris-Rex está programada para el envío desde las instalaciones de Lockheed Martin para el Centro Espacial Kennedy de la NASA en mayo próximo, donde se realizarán los preparativos finales para el lanzamiento.Después del lanzamiento en septiembre de 2016, la nave viajará al cercano a la Tierra de asteroides Bennu y llevar al menos un 60 gramos (2.1 onzas) de muestras a la Tierra para su estudio. Osiris-Rex volverá la muestra más grande desde el espacio ya Luna 24 misión de la Unión Soviética volvió 170 gramos (6 onzas) de suelo lunar en 1976.Los científicos esperan que el Bennu puede dar pistas sobre el origen del sistema solar y la fuente de agua y moléculas orgánicas que pueden haber hecho su camino a la Tierra. La investigación de Osiris-Rex informará a los futuros esfuerzos para desarrollar una misión de mitigar un impacto, debe se ser necesario.
The high gain antenna and solar arrays were installed on the OSIRIS-REx spacecraft prior to it moving to environmental testing.
Credits: Lockheed Martin Corporation
NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission is undergoing environmental testing at Lockheed Martin Space Systems facilities, near Denver, Colorado. OSIRIS-REx will be the first U.S. mission to return samples from an asteroid to Earth for further study.
"OSIRIS-REx is entering environmental testing on schedule, on budget and with schedule reserves," said Mike Donnelly, OSIRIS-REx project manager at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "This allows us to have flexibility if any concerns arise during final launch preparations."
Over the next five months, the spacecraft will be subjected to a range of rigorous tests that simulate the vacuum, vibration and extreme temperatures it will experience throughout the life of its mission.
“This is an exciting time for the program as we now have a completed spacecraft and the team gets to test drive it, in a sense, before we actually fly it to asteroid Bennu,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems. “The environmental test phase is an important time in the mission as it will reveal any issues with the spacecraft and instruments, while here on Earth, before we send it into deep space.”
Specifically, the OSIRIS-REx spacecraft will undergo tests to simulate the harsh environment of space, including acoustical, separation and deployment shock, vibration, and electromagnetic interference. The simulation concludes with a test in which the spacecraft and its instruments are placed in a vacuum chamber and cycled through the extreme hot and cold temperatures it will face during its journey to Bennu.
"This milestone marks the end of the design and assembly stage,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We now move on to test the entire flight system over the range of environmental conditions that will be experienced on the journey to Bennu and back. This phase is critical to mission success, and I am confident that we have built the right system for the job."
OSIRIS-REx is scheduled to ship from Lockheed Martin’s facility to NASA’s Kennedy Space Center next May, where it will undergo final preparations for launch.
After launch in September 2016, the spacecraft will travel to the near-Earth asteroid Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. OSIRIS-REx will return the largest sample from space since the Soviet Union’s Luna 24 mission returned 170 grams (6 ounces) of lunar soil in 1976.
Scientists expect that the Bennu may hold clues to the origin of the solar system and the source of water and organic molecules that may have made their way to Earth. OSIRIS-REx’s investigation will inform future efforts to develop a mission to mitigate an impact, should one be required.
NASA's Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission's principal investigator at the University of Arizona. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.
Hola amigos: A VUELO DE UN QUINDE EL BLOG., El cúmulo de galaxias MS 0735,6 + 7421, es el hogar de una de las erupciones más poderosas jamás observados. Los rayos X detectados por NASA's Chandra X-Ray Observatory (blue) (azul) muestran que el gas caliente que comprende gran parte de la masa de este enorme objeto. Dentro de los datos del Chandra, agujeros o cavidades, se puede ver. Estas cavidades fueron creados por una explosión de un agujero negro supermasivo en el centro del cúmulo, que expulsa los enormes chorros detectados en las ondas de radio (rosa) detectados por el Very Large Array. Estos datos han sido combinados con los datos ópticos del telescopio espacial de galaxias en el cúmulo y estrellas por the Hubble Space Telescope en el campo de visión (de color naranja).Esta imagen es parte de una colección de nuevas imágenes publicadas del archivo Chandra para celebrar Americana Archivo Mes. Archivos, en sus muchas formas, guardar la información de hoy que la gente quiera acceder y estudiar en el futuro. Esta es una función crítica de todos los archivos, pero es especialmente importante cuando se trata de almacenar los datos de los telescopios modernos de hoy en día. Chandra ha recogido datos de más de dieciséis años en miles de diferentes objetos en todo el universo. Una vez que los datos se procesan, todos los datos entra en un archivo y se encuentra disponible al público.
The galaxy cluster MS 0735.6+7421 is home to one of the most powerful eruptions ever observed. X-rays detected by NASA's Chandra X-Ray Observatory (blue) show the hot gas that comprises much of the mass of this enormous object. Within the Chandra data, holes, or cavities, can be seen. These cavities were created by an outburst from a supermassive black hole at the center of the cluster, which ejected the enormous jets detected in radio waves (pink) detected by the Very Large Array. These data have been combined with optical data from the Hubble Space Telescope of galaxies in the cluster and stars in the field of view (orange).
This image is part of a collection of new images released from the Chandra archive to celebrate American Archive Month. Archives, in their many forms, save information from today that people will want to access and study in the future. This is a critical function of all archives, but it is especially important when it comes to storing data from today's modern telescopes. Chandra has collected data for over sixteen years on thousands of different objects throughout the universe. Once the data is processed, all of the data goes into an archive and is available to the public.
Image credit: X-ray: NASA/CXC/Univ. of Waterloo/A.Vantyghem et al; Optical: NASA/STScI; Radio: NRAO/VLA