Hola amigos: A VUELO DE UN QUINDE EL BLOG., El observatorio espacial Herschel de la ESA ha detectado emisiones de vapor de agua en un disco de polvo que se arremolina entorno a una joven estrella. Estas emisiones indican la existencia de una reserva de agua capaz de llenar miles de océanos terrestres.
Detección de vapor de agua en el espectro del disco protoplanetario de TW Hydrae
English Version : This image shows an artist's impression of the icy protoplanetary disc around the young star TW Hydrae (upper panel) and the spectrum of the disc as obtained using the HIFI spectrometer on ESA's Herschel Space Observatory (lower panel).
By analysing the spectrum, astronomers have detected the emission from cold water vapour in the planet-forming disc. The vapour arises when highly energetic radiation from the central star interacts with icy grains in the disc. The detection thus hints at a copious and otherwise undetectable supply of water ice hidden in the disc's deeper and colder layers.
The graph in the lower panel shows the spectral signature of water vapour in the disc. Water molecules come in two "spin" forms, called ortho and para, in which the two spins of the hydrogen nuclei have different orientations. By comparing the relative amounts of ortho and para water, astronomers can determine the temperatures under which the water formed. Lower ratios indicate cooler temperatures, though in practice the analysis is much more complicated. The ratio of ortho to para water observed in TW Hydrae's protoplanetary disc is low enough to point to the presence of cold water vapour. Credits: ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory).
By analysing the spectrum, astronomers have detected the emission from cold water vapour in the planet-forming disc. The vapour arises when highly energetic radiation from the central star interacts with icy grains in the disc. The detection thus hints at a copious and otherwise undetectable supply of water ice hidden in the disc's deeper and colder layers.
The graph in the lower panel shows the spectral signature of water vapour in the disc. Water molecules come in two "spin" forms, called ortho and para, in which the two spins of the hydrogen nuclei have different orientations. By comparing the relative amounts of ortho and para water, astronomers can determine the temperatures under which the water formed. Lower ratios indicate cooler temperatures, though in practice the analysis is much more complicated. The ratio of ortho to para water observed in TW Hydrae's protoplanetary disc is low enough to point to the presence of cold water vapour. Credits: ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory).
TW Hydrae es una estrella formada hace unos 5-10 millones de años, que se encuentra a tan sólo 176 años luz de la Tierra. Se encuentra en la última etapa de su proceso de formación y está rodeada por un disco de polvo y gas que se terminará condensando para dar lugar a todo un sistema de planetas.
Se piensa que una buena parte del agua de nuestro planeta llegó a bordo de los cometas que chocaron contra la Tierra durante sus primeras etapas de formación. Esta hipótesis está respaldada por el reciente descubrimiento realizado por Herschel de agua similar a la de nuestro planeta en un cometa, el 103P/Hartley 2. Sin embargo, hasta ahora no se conocía la posibilidad de que existiesen reservas importantes de agua en los discos protoplanetarios que rodean a algunas estrellas.
Este descubrimiento, el primero de su clase, ha sido realizado con el instrumento HIFI de Herschel.
El satélite europeo detectó emisiones de vapor de agua a lo largo de todo el disco que se arremolina entorno a TW Hydrae. Se piensa que estas emisiones se producen cuando la radiación ultravioleta interestelar calienta el hielo incrustado en los granos de polvo que conforman el disco. Esta reserva de agua podría ser un importante aporte para los planetas que se terminarán formando entorno a esta joven estrella.
“Este fenómeno podría ser parecido a lo que ocurrió en nuestro propio Sistema Solar, en el que los granos de polvo cargados de hielo se fueron agregando para formar cometas”, explica Michiel Hogerheijde de la Universidad de Leiden, en los Países Bajos, quien dirigió este estudio.
“Pensamos que los cometas fueron una fuente importante de agua para los planetas de nuestro Sistema Solar”.
Se piensa que una buena parte del agua de nuestro planeta llegó a bordo de los cometas que chocaron contra la Tierra durante sus primeras etapas de formación. Esta hipótesis está respaldada por el reciente descubrimiento realizado por Herschel de agua similar a la de nuestro planeta en un cometa, el 103P/Hartley 2. Sin embargo, hasta ahora no se conocía la posibilidad de que existiesen reservas importantes de agua en los discos protoplanetarios que rodean a algunas estrellas.
Este descubrimiento, el primero de su clase, ha sido realizado con el instrumento HIFI de Herschel.
El satélite europeo detectó emisiones de vapor de agua a lo largo de todo el disco que se arremolina entorno a TW Hydrae. Se piensa que estas emisiones se producen cuando la radiación ultravioleta interestelar calienta el hielo incrustado en los granos de polvo que conforman el disco. Esta reserva de agua podría ser un importante aporte para los planetas que se terminarán formando entorno a esta joven estrella.
“Este fenómeno podría ser parecido a lo que ocurrió en nuestro propio Sistema Solar, en el que los granos de polvo cargados de hielo se fueron agregando para formar cometas”, explica Michiel Hogerheijde de la Universidad de Leiden, en los Países Bajos, quien dirigió este estudio.
“Pensamos que los cometas fueron una fuente importante de agua para los planetas de nuestro Sistema Solar”.
English Version: This artist's impression illustrates an icy protoplanetary disc around the young star TW Hydrae, located about 175 light-years away in the Hydra, or Sea Serpent, constellation.
Astronomers using the HIFI spectrometer on ESA's Herschel Space Observatory detected copious amounts of cold water vapour, illustrated in blue, emanating from the star's planet-forming disc of dust and gas. The water vapour, corresponding to temperatures lower than 100 K, is distributed across the entire extent of the disc and is likely confined to a thin layer at an intermediate depth in the disc. The vapour arises when highly energetic radiation from the central star interacts with icy grains in the disc, the very same grains that should ultimately coalesce into icy planetesimals, such as comets. The detection thus hints at a copious and otherwise undetectable supply of water ice hidden in the disc's deeper and colder layers.
In our own Solar System, comets are thought to have carried water to Earth, creating our oceans. A similar process might be taking place around TW Hydrae, where comets could, over the next several millions of years, transport water to young worlds. The Herschel results demonstrate that vast reservoirs of water are available around stars for creating these hypothetical water worlds. Credits: ESA/NASA/JPL-Caltech .
Los científicos han realizado detalladas simulaciones que combinan estos nuevos resultados con las observaciones realizadas anteriormente desde tierra y con los datos del telescopio Spitzer de la NASA, lo que les ha permitido calcular el volumen de las reservas de hielo de este disco protoplanetario.
Sus resultados indican que el disco entorno a TW Hydrae almacena tanta agua que se podrían llenar varios miles de océanos terrestres.
“Ya hemos reservado tiempo de observación de Herschel para estudiar otros tres discos protoplanetarios entorno a otras estrellas”, confirma Hogerheijde.
“Esperamos encontrar resultados similares a los de TW Hydrae, aunque como ahora estudiaremos objetos que están hasta tres veces más lejos, harán falta muchas más horas de observación”.
Esta investigación abre las puertas a una nueva forma de comprender el papel que juega el agua en los discos protoplanetarios, y ofrece a los científicos un nuevo campo de pruebas para investigar cómo llegó el agua a nuestro planeta.
“Gracias a Herschel podemos seguir el rastro del agua a través de todos los pasos del proceso de formación de las estrellas y de los planetas”, comenta Göran Pilbratt, Científico del Proyecto Herschel para la ESA.
“En TW Hydrae estamos observando la ‘materia prima’ a partir de la cual se terminarán formando nuevos planetas, lo que nos ayuda a comprender mejor cómo se formó el Sistema Solar en el que vivimos”. ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
Astronomers using the HIFI spectrometer on ESA's Herschel Space Observatory detected copious amounts of cold water vapour, illustrated in blue, emanating from the star's planet-forming disc of dust and gas. The water vapour, corresponding to temperatures lower than 100 K, is distributed across the entire extent of the disc and is likely confined to a thin layer at an intermediate depth in the disc. The vapour arises when highly energetic radiation from the central star interacts with icy grains in the disc, the very same grains that should ultimately coalesce into icy planetesimals, such as comets. The detection thus hints at a copious and otherwise undetectable supply of water ice hidden in the disc's deeper and colder layers.
In our own Solar System, comets are thought to have carried water to Earth, creating our oceans. A similar process might be taking place around TW Hydrae, where comets could, over the next several millions of years, transport water to young worlds. The Herschel results demonstrate that vast reservoirs of water are available around stars for creating these hypothetical water worlds. Credits: ESA/NASA/JPL-Caltech .
Los científicos han realizado detalladas simulaciones que combinan estos nuevos resultados con las observaciones realizadas anteriormente desde tierra y con los datos del telescopio Spitzer de la NASA, lo que les ha permitido calcular el volumen de las reservas de hielo de este disco protoplanetario.
Sus resultados indican que el disco entorno a TW Hydrae almacena tanta agua que se podrían llenar varios miles de océanos terrestres.
“Ya hemos reservado tiempo de observación de Herschel para estudiar otros tres discos protoplanetarios entorno a otras estrellas”, confirma Hogerheijde.
“Esperamos encontrar resultados similares a los de TW Hydrae, aunque como ahora estudiaremos objetos que están hasta tres veces más lejos, harán falta muchas más horas de observación”.
Esta investigación abre las puertas a una nueva forma de comprender el papel que juega el agua en los discos protoplanetarios, y ofrece a los científicos un nuevo campo de pruebas para investigar cómo llegó el agua a nuestro planeta.
“Gracias a Herschel podemos seguir el rastro del agua a través de todos los pasos del proceso de formación de las estrellas y de los planetas”, comenta Göran Pilbratt, Científico del Proyecto Herschel para la ESA.
“En TW Hydrae estamos observando la ‘materia prima’ a partir de la cual se terminarán formando nuevos planetas, lo que nos ayuda a comprender mejor cómo se formó el Sistema Solar en el que vivimos”. ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario
Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.