No hothouse plants: Study examines supermarket tomatoes' wild relatives, which live in Earth's most extreme environments
Credit and Larger Version |
December 5, 2013
The following is part twelve in a series on the National Science Foundation's Science, Engineering and Education for Sustainability (SEES) investment. Visit parts one, two, three, four, five, six, seven, eight, nine, ten and eleven in this series.
Tomatoes are in almost everything we eat, from salad and soup to chili and pizza. For some, tomato-based dishes are featured during the holiday season.
Most people don't realize, however, that there are more than a dozen wild tomato species, or that wild tomatoes grow in the deserts, rainforests and highlands of South America and on the Galapagos Islands.
These wild species don't have the big, bold fruits we're used to seeing in the supermarket, though. Wild tomato fruits are smaller, from the size of a pea to that of a large marble and are sometimes green and bitter when they're ripe.
But compared with their domesticated relatives, wild tomatoes are more diverse in many hidden and not-so-hidden ways.
Now scientists are using the genomes of wild tomatoes to study the processes that drive Earth's biodiversity.
Their goal is to learn how species cope with differences in climate and natural enemies, and what might happen in this time of environmental change.
Wild tomato genomes as a framework for understanding biodiversity
To study natural trait and genome diversity in wild tomatoes, scientists Leonie Moyle, David Haak and Matthew Hahn of Indiana University Bloomington received a grant from the National Science Foundation's (NSF) Dimensions of Biodiversity program.
Dimensions of Biodiversity is part of NSF's Science, Engineering and Education for Sustainability investment and is supported by NSF's Directorates for Biological Sciences and Geosciences.
Scientists funded through Dimensions of Biodiversity integrate genetic, taxonomic and functional approaches in their research.
"The resulting discoveries go beyond expanding our knowledge of the depth and breadth of life on Earth," says John Wingfield, NSF assistant director for Biological Sciences.
"They have the potential to revolutionize the way we manage agriculture, practice medicine, address global climate change and develop new technologies."
The award to Moyle's team funds sequencing of the complete set of all expressed genes (the transcriptome) in populations of wild tomato species.
"Variations within and between these wild tomato genomes can be compared by using the genome sequence of the domesticated tomato as a 'backbone,'"says Moyle.
By linking this genome-wide sequence data with information on wild tomato trait variation, the biologists hope to identify the genes responsible for adaptation to environmental change.
The research focuses on the role of drought and of defense against herbivores, or plant-eaters, in the diversity of wild tomatoes.
"These factors," says Haak, "capture two of the most important aspects of any plant's environment: climate and natural enemies."
Wild tomatoes: From hothouse to deep freeze
While domesticated tomatoes thrive only in agricultural irrigation, wild tomatoes live in some of the planet's most extreme environments.
They're among the few plants found in the driest place on Earth--the Atacama Desert in Chile. Other wild tomatoes blossom along the rocky, salty shores of the Galapagos Islands, and in the daily rains of Ecuador's rainforests.
But it's not just the climate in which they grow that varies among wild tomatoes.
The plants bristle with an array of natural defenses, from dense coverings of plant hairs to toxins deadly against insect attackers.
Measuring biodiversity in plant defenses
In a forthcoming paper in the journal Ecology, Haak, Moyle and colleagues document large differences in defenses among wild tomatoes.
They used bioassays--experiments in which living organisms are used to reveal the potency or concentration of a substance.
In this case, they fed leaf samples of different wild tomato species to tobacco hornworms.
The tobacco hornworm--also known as the tomato hornworm--is an enemy of both domesticated and wild tomatoes. It rapidly eats its way through the plants' leaves.
Each hornworm caterpillar was weighed before and after feeding to determine how much it had gained on a diet of wild tomato leaves.
Those tomatoes on which caterpillars gained little or no weight, says Haak, have more natural defenses than those on which the caterpillars gained weight.
In one wild tomato species, caterpillars lost significant weight; they refused to consume the plant's toxic leaves.
The researchers showed that the level of natural defense varies widely among wild tomato species.
"Although all wild tomatoes are closely related, these patterns of defense variation don't simply follow historical, evolutionary relationships," says Moyle. "The defense level of each wild tomato population is likely shaped by responses to local herbivores."
Linking biodiversity to genomics to understand environmental responses
Moyle and Haak are using DNA sequencing to look at the genes that are expressed differently in wild tomatoes with varying levels of natural defenses, and with differences in responses to drought.
Genes that are consistently up- or down-regulated in these conditions, says Moyle, can reveal the changes important for responding to and coping with environmental stresses.
"By linking data on DNA sequence variation, and on variation in gene expression, with wild tomatoes' responses to drought and natural enemies," she says, "we may find a powerful model for understanding the genetics of responses to environmental change."
The study could also uncover genetic variations helpful in improving domesticated tomatoes and their cultivated relatives, including potatoes and peppers.
"This research on tomatoes' wild relatives offers insights into the huge reservoir of genetic information available to ensure our future food security," says Simon Malcomber, lead NSF program director for Dimensions of Biodiversity.
"Tomatoes are one of the most widely consumed foods around the world," he says. "Studies such as this provide important information that could be used to improve herbivore resistance in crop cultivars."
Next time you're in the supermarket, tomatoes are worth a closer look. These common plants may offer a glimpse of our global food security, and of Earth's environmental future.
-- | Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov |
Investigators David Haak
Leonie Moyle
Matthew Hahn
Leonie Moyle
Matthew Hahn
Related Institutions/Organizations Indiana University
Related Programs Dimensions of Biodiversity
Total Grants $1,182,938
Related WebsitesIn race against time, NSF grants fund research on Earth's threatened biodiversity:
http://www.nsf.gov/news/news_summ.jsp?cntn_id=129242
Stemming the Tide of Biodiversity Loss on Earth:
Stemming the Tide of Biodiversity Loss on Earth:
http://www.nsf.gov/news/news_summ.jsp?cntn_id=125495&org=NSF&from=news
Diversity of Life on Earth: NSF Awards Grants for Study of Dimensions of Biodiversity:
Diversity of Life on Earth: NSF Awards Grants for Study of Dimensions of Biodiversity:
http://www.nsf.gov/news/news_summ.jsp?cntn_id=122098
NSF Awards Grants to Study Dimensions of Earth's Biodiversity:
NSF Awards Grants to Study Dimensions of Earth's Biodiversity:
http://www.nsf.gov/news/news_summ.jsp?cntn_id=117811&org=NSF&from=news
Earth Week: A Stream Is a Stream Is a Stream: Or Is It?:
Earth Week: A Stream Is a Stream Is a Stream: Or Is It?:
http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=123855&org=NSF
NSF Publication: "Discoveries in Sustainability":
NSF Publication: "Discoveries in Sustainability":
http://www.nsf.gov/pubs/2012/disco12001/disco12001.pdf
Biodiversity of Earth's Richest Plant Kingdom Under Fire:
Biodiversity of Earth's Richest Plant Kingdom Under Fire:
http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=122938&org=NSF
Wild tomatoes (right) differ in size, taste, color from domesticated tomatoes (left).
Credit and Larger Version
Wild tomatoes (right) differ in size, taste, color from domesticated tomatoes (left).
Credit and Larger Version
Sheena Shah, a researcher at Indiana University Bloomington, labels wild tomatoes in a greenhouse.
Credit and Larger Version
Credit and Larger Version
First the sweet, then the bitter: The green-striped, wild tomato Solanum peruvianum.
Credit and Larger Version
Researcher Amanda Garbers of Indiana University Bloomington studies the DNA of wild tomato plants.
Credit and Larger Version
The National Science Foundation
Guillermo Gonzalo Sánchez Achutegui
No hay comentarios:
Publicar un comentario
Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.