NASA data and expertise are proving invaluable in California’s ongoing
response to the Aug. 24 magnitude 6.0 earthquake in Napa Valley, northeast of
San Francisco. The quake was the strongest to occur in the San Francisco Bay
Area in a quarter-century and caused significant regional damage.
Analyses by scientists at NASA’s Jet Propulsion Laboratory, Pasadena,
California, of airborne data from NASA’s Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR), GPS data and radar imagery from the Italian Space
Agency’s COSMO-SkyMed satellites, are revealing important details of how the
ground deformed in the region and the nature of the fault movements. In
addition, a NASA-funded disaster decision support system has provided a series
of rapid-response data maps to decision makers at the California Earthquake
Clearinghouse. Those maps are being used to better direct response efforts.
NASA has been monitoring active earthquake faults in California using a
variety of remote sensing and ground-based techniques. The JPL-developed UAVSAR,
in use since 2009, is an L-band Interferometric Synthetic Aperture Radar
instrument that flies mounted underneath a NASA C-20A Earth science research
aircraft from NASA’s Armstrong Flight Research Center at Edwards, California.
UAVSAR is able to detect minute changes in Earth’s surface that occur over time
between flights of the instrument. UAVSAR has monitored the Napa area about
every six months since November 2009.
A comparison of UAVSAR data collected May 29, 2014, three months before the
quake, and on Aug. 29, 2014, five days after the quake, reveals that slip
occurred on multiple strands of the fault near the quake’s epicenter. A new
UAVSAR image showing these changes is available at: http://photojournal.jpl.nasa.gov/catalog/pia18801
The image colors represent the amount of ground motion between the two
flights in the direction from a point on the ground to the instrument, which
flies at an altitude of 41,000 feet (12,497 meters). Preliminary results
indicate several inches/centimeters of horizontal slip occurred on the various
strands of the fault.
Further UAVSAR data analyses will reveal how deep beneath Earth’s surface the
faults slipped and the amount of the slip. Initial GPS analyses, shown by the
yellow arrows, indicate an average slip of nearly 23.6 inches (60 centimeters)
along a 9.3-mile-long (15-kilometer) fault. That is equivalent to a magnitude
6.1 earthquake. This suggests that fault strands continued to slip after the
main earthquake, but did not produce any large aftershocks.
The Aug. 29 UAVSAR flight was conducted to assess if the earthquake damaged
any of the water conveyance infrastructure of the Sacramento Delta. By Aug. 31,
UAVSAR data about ground movement along the San Pablo Bay shoreline were in the
hands of the California Department of Water Resources, who used it to assess
levee and aqueduct damage in support of their emergency response activities. It
was also provided to the United States Geological Survey to direct their ground
survey crews.
“NASA’s UAVSAR radar imagery of the magnitude 6.0 Napa earthquake is being
widely used to identify fault slip across the full Napa fault zone for the
scientific, engineering and damage assessment communities and may result in the
most comprehensive fault map ever produced for an earthquake in the United
States,” said Gerald Bawden, program scientist at NASA Headquarters,
Washington.
JPL scientists, in collaboration with the NASA’s Armstrong Flight Research Center Center
for the Interpretation of Earth Observation Data and the Universita degli studi
della Basilicata, also analyzed interferometric synthetic aperture radar images
from ASI’s COSMO-SkyMed satellites to calculate a map of the deformation of
Earth’s surface caused by the quake. The deformation is shown in a new
false-color map that has been combined with shaded relief topography in gray. A
pair of new maps created from these data can be viewed at: http://photojournal.jpl.nasa.gov/catalog/pia18798
The colors in the top map indicate the amount of permanent surface movement
that occurred almost entirely due to the quake, as viewed by the satellite,
during a one-month interval between two COSMO-SkyMed images acquired on July 26
and Aug. 27, 2014. Scientists use these maps to build detailed models of the
fault and associated land movements to better understand the impact on future
earthquake activity.
The second radar map is based on the same data as the first map, but
highlights very small-scale ground deformation and evidence of the fault rupture
visible on Earth’s surface. The inset map shows a close-up of the color cycles,
revealing a discontinuity in the color cycles that identifies a potential fault
rupture cutting through the Napa County Airport. United States Geological Survey
and California Geological Survey field crews investigated this feature and were
able to verify that the fault did break Earth’s surface at this location, along
a previously unidentified fault rupture.
The rapid response data maps developed under NASA’s E-DECIDER disaster
decision support system may be viewed at: http://photojournal.jpl.nasa.gov/catalog/PIA18797
They include an aftershock forecast map that highlights where aftershocks are
likely to occur; a strain magnitude map that highlights areas where the greatest
ground deformation has occurred based on a fault model; and InLET (Internet Loss
Estimation Tool), which provides immediate post-event approximate estimates of
casualties and building damage for planning purposes and early-post event
response before more detailed data are available.
For more on the UAVSAR Napa earthquake studies, visit:
NASA monitors Earth’s vital signs from land, air and space with a fleet of
satellites and ambitious airborne and ground-based observation campaigns. NASA
develops new ways to observe and study Earth’s interconnected natural systems
with long-term data records and computer analysis tools to better see how our
planet is changing. The agency shares this unique knowledge with the global
community and works with institutions in the United States and around the world
that contribute to understanding and protecting our home planet. For more
information about NASA's Earth science activities in 2014, visit:
Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
alan.buis@jpl.nasa.gov
Alan Brown
NASA Armstrong Flight Research Center, Edwards, Calif.
661-276-2665
alan.brown@nasa.gov
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
alan.buis@jpl.nasa.gov
Alan Brown
NASA Armstrong Flight Research Center, Edwards, Calif.
661-276-2665
alan.brown@nasa.gov
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario
Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.