Hola amigos: A VUELO DE UN QUINDE EL BLOG., hemos recibido de la Agencia Espacial NASA, la información que su nave NASA’s PACE spacecraft estudiará el color de los Océanos, las partículas aerotransportadas y las nubes de la Tierra.
NASA is beginning work on a new satellite mission that will extend critical
climate measurements of Earth’s oceans and atmosphere and advance studies of the
impact of environmental changes on ocean health, fisheries and the carbon
cycle.
Tentatively scheduled to launch in 2022, the Pre-Aerosol Clouds and ocean
Ecosystem (PACE) mission will study Earth’s aquatic ecology and chemistry, and
address the uncertainty in our understanding of how clouds and small airborne
particles called aerosols affect Earth’s climate. PACE will be managed by NASA's
Goddard Space Flight Center in Greenbelt, Maryland.
“Knowing more about global phytoplankton community composition will help us
understand how living marine resources respond to a changing climate,” said
Jeremy Werdell, PACE project scientist at Goddard. “With PACE, we will learn
more about the role of marine phytoplankton in the global carbon cycle.”
NASA has long used satellites to observe the global ocean’s microscopic algal
communities, which play a significant role in the ocean’s ecology and the global
carbon cycle. PACE will provide a global view of the planet's microscopic ocean
algae called phytoplankton. Phytoplankton live in the sunlit upper layer of the
ocean, producing at least half of the oxygen on Earth and form the base of the
marine food chain.
Goddard will build PACE’s ocean color instrument. This PACE sensor will allow
scientists to see the colors of the ocean, from the ultraviolet to near
infrared, and obtain more accurate measurements of biological and chemical ocean
properties, such as phytoplankton biomass and the composition of phytoplankton
communities. These changes in the ocean’s color help identify harmful algal
blooms.
Quantifying phytoplankton is essential for understanding the carbon cycle and
tracking climate variability and change. The ocean absorbs atmospheric carbon
dioxide into solution at the sea surface. Like land plants, phytoplankton use
carbon dioxide to create their organic biomass via photosynthesis. Phytoplankton
vary greatly in their size, function, and response to environmental and
ecosystem changes or stresses such as ocean acidification.
Dissolved carbon dioxide also reacts with seawater and alters its acidity.
About one fourth of human-made carbon dioxide ends up in the ocean.
"NASA Goddard pioneered ocean color remote sensing 35 years ago with the very
first satellite observations, and the Center has been committed to supporting
the science ever since," said Piers Sellers, deputy director of NASA Goddard
Earth Science. "Goddard scientists play a critical role in generating and
improving core satellite data sets for the international ocean biology
community. We look forward to extending this important record into the future
with PACE."
In addition to gathering data on ocean color, PACE will measure clouds and
tiny airborne particles like dust, smoke and aerosols in the atmosphere to
supplement measurements from existing NASA satellite missions. These
measurements are critical for understanding the flow of natural and human made
aerosols in the environment. Aerosols affect how energy moves in and out of
Earth’s atmosphere directly by scattering sunlight, and indirectly by changing
the composition of clouds. Aerosols also can affect the formation of
precipitation in clouds and change rainfall patterns.
The blend of atmospheric and oceanic observations from PACE is critical as
ocean biology is affected by aerosols deposited onto the ocean, which in turn,
produce aerosol precursors that influence atmospheric composition and climate.
NASA is currently planning a second PACE instrument, a polarimeter, to better
measure aerosol and cloud properties. These measurements will improve
understanding of the roles of aerosols in the climate system.
Goddard's proof-of-concept sensor for measuring ocean color — the Coastal
Zone Color Scanner that flew on the Nimbus-7 satellite from 1978 to 1986 — was
the first sensor to demonstrate phytoplankton biomass could be quantified from
space. The Sea-Viewing Wide Field-of-View Sensor or SeaWiFS mission collected
data from 1997 to 2010 and was the first mission dedicated to routinely observe
ocean biology, chemistry, and ecology for long-term climate research. Currently,
researchers employ the Moderate Resolution Imaging Spectroradiometer that flies
aboard both NASA’s Terra and Aqua spacecraft, and the Visible Infrared Imager
Radiometer Suite aboard the NASA-NOAA Suomi National Polar-orbiting Partnership
satellite, to measure biological and chemical properties of the ocean, as well
as aerosol and cloud properties.
NASA capped the costs for PACE at $805 million, to cover the spacecraft,
mission design and engineering, science, instruments, launch vehicle, data
processing, and operations.
For more information about PACE, visit:
NASA uses the vantage point of space to increase our understanding of our
home planet, improve lives, and safeguard our future. NASA develops new ways to
observe and study Earth's interconnected natural systems with long-term data
records. The agency freely shares this unique knowledge and works with
institutions around the world to gain new insights into how our planet is
changing.
For more information on NASA’s Earth science activities, visit:
NASA
Guillermo Gonzalo Sánchez Achutegui
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario
Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.