domingo, 2 de abril de 2017

ESA : Supersonic plasma jets discovered .- Chorros supersónicos de plasma descubiertos

http://www.esa.int/Our_Activities/Observing_the_Earth/Swarm/Supersonic_plasma_jets_discovered
http://www.esa.int/esl/ESA_in_your_country/Spain/Descubiertos_chorros_supersonicos_de_plasma

Descubiertos chorros supersónicos de plasma

Corrientes de Birkeland
 
28 marzo 2017
Los datos sobre el campo magnético recopilados por la misión Swarm de la ESA han permitido descubrir en lo alto de nuestra atmósfera chorros supersónicos de plasma que pueden hacer ascender las temperaturas hasta casi 10.000 °C. 
Durante el Swarm Science Meeting celebrado en Canadá la semana pasada, científicos de la Universidad de Calgary presentaron estos hallazgos y explicaron cómo estaban aprovechando las mediciones del trío de satélites Swarm para seguir desarrollando lo que ya se sabía sobre las vastas láminas de corriente eléctrica producidas en la alta atmósfera.
La teoría de que existen enormes corrientes eléctricas, impulsadas por el viento solar y guiadas a través de la ionosfera por el campo magnético terrestre, fue postulada hace más de un siglo por el científico noruego Kristian Birkeland.
Pero estas ‘corrientes de Birkeland’ no se pudieron confirmar mediante mediciones directas en el espacio hasta los años setenta, con la llegada de los satélites.
 
Láminas de corriente ascendentes y descendentes

Estas corrientes transportan hacia la alta atmósfera hasta 1 TW de energía eléctrica, unas 30 veces lo que consume la ciudad de Nueva York durante una ola de calor.
También son responsables de las auroras polares, las populares cortinas de luz verdosa que se mueven lentamente de horizonte a horizonte.
Aunque estos sistemas de corrientes ya eran bien conocidos, las recientes observaciones de Swarm han revelado su relación con grandes campos eléctricos. 
 
Ascenso de los iones calentados

Estos campos, que son más fuertes en invierno, se producen allí donde las corrientes de Birkeland ascendentes y descendentes se conectan a través de la ionosfera.
Bill Archer, de la Universidad de Calgary, lo explica así: “Gracias a los datos procedentes los instrumentos de los satélites Swarm, descubrimos que estos potentes campos eléctricos impulsan chorros de plasma supersónicos”.
“Estos chorros, que llamamos ‘flujos fronterizos de corrientes de Birkeland’, marcan claramente el límite entre las láminas de corriente que se mueven en sentidos opuestos y provocan condiciones extremas en la alta atmósfera”.
“Pueden hacer que la ionosfera alcance temperaturas de hasta 10.000 °C, cambiando su composición química. También hacen que la ionosfera ascienda a mayores altitudes, donde la energización adicional puede conducir a la pérdida de material atmosférico al espacio”. 
 
Fuentes de campo magnético

David Knudsen, también de la Universidad de Calgary, añade: “Estos últimos resultados de Swarm aportan nuevos datos sobre potencial eléctrico y tensión a nuestros conocimientos del circuito de corrientes de Birkeland, que probablemente sea el fenómeno de organización del sistema de acoplamiento magnetosfera-ionosfera más ampliamente reconocido”.
Este descubrimiento se suma a los nuevos hallazgos presentados en la semana de reuniones científicas dedicadas a la misión Swarm. En otro de los dedicados a las corrientes de Birkeland, por ejemplo, los datos de Swarm se utilizaron para confirmar que estas corrientes son más fuertes en el hemisferio norte y que presentan variaciones estacionales. 
Desde su lanzamiento en 2013, los tres satélites idénticos de Swarm miden y desentrañan las distintas señales magnéticas procedentes del núcleo, el manto, la corteza, los océanos, la ionosfera y la magnetosfera de nuestro planeta. 
 
Parte frontal de un satélite Swarm
 
Además del instrumental adecuado para ello, cada satélite presenta un instrumento de campo eléctrico en la parte frontal que mide la densidad, la deriva y la velocidad del plasma.
Como reconoce Rune Floberghagen, responsable de la misión Swarm de la ESA: “El instrumento de campo eléctrico es el primer generador de imágenes ionosférico en órbita, por lo que estamos encantados de obtener estos fantásticos resultados gracias a él”.
“La dedicación de los científicos que trabajan con los datos de la misión nunca deja de sorprenderme y estamos viendo algunos resultados excelentes, como estos, durante el encuentro de esta semana”.
“Swarm nos está permitiendo ver cómo funciona el planeta, desde lo más profundo de su núcleo hasta lo más alto de la atmósfera”. 

ENGLISH VERSION :


Birkeland currents
 
23 March 2017  a vuelo
Information from ESA’s magnetic field Swarm mission has led to the discovery of supersonic plasma jets high up in our atmosphere that can push temperatures up to almost 10 000°C.
Presenting these findings at this week’s Swarm Science Meeting in Canada, scientists from the University of Calgary explained how they used measurements from the trio of Swarm satellites to build on what was known about vast sheets of electric current in the upper atmosphere.
The theory that there are huge electric currents, powered by solar wind and guided through the ionosphere by Earth’s magnetic field, was postulated more than a century ago by Norwegian scientist Kristian Birkeland.
It wasn’t until the 1970s, after the advent of satellites, however, that these ‘Birkeland currents’ were confirmed by direct measurements in space.
 

Upward and downward current sheets

These currents carry up to 1 TW of electric power to the upper atmosphere – about 30 times the energy consumed in New York during a heatwave.
They are also responsible for ‘aurora arcs’, the familiar, slow-moving green curtains of light that can extend from horizon to horizon.
While much is known about these current systems, recent observations by Swarm have revealed that they are associated with large electrical fields.
 

Heated ions travel upward

These fields, which are strongest in the winter, occur where upwards and downwards Birkeland currents connect through the ionosphere.
Bill Archer from the University of Calgary explained, “Using data from the Swarm satellites’ electric field instruments, we discovered that these strong electric fields drive supersonic plasma jets.
“The jets, which we call ‘Birkeland current boundary flows’, mark distinctly the boundary between current sheets moving in opposite direction and lead to extreme conditions in the upper atmosphere.
“They can drive the ionosphere to temperatures approaching 10 000°C and change its chemical composition. They also cause the ionosphere to flow upwards to higher altitudes where additional energisation can lead to loss of atmospheric material to space.”
 

Magnetic field sources

David Knudsen, also from the University of Calgary, added, “These recent findings from Swarm add knowledge of electric potential, and therefore voltage, to our understanding of the Birkeland current circuit, perhaps the most widely recognised organising feature of the coupled magnetosphere–ionosphere system.”
This discovery is just one of the new findings presented at the week-long science meeting dedicated to the Swarm mission. Also presented this week and focusing on Birkeland currents, for example, Swarm was used to confirm that these currents are stronger in the northern hemisphere and vary with the season.
Since they were launched in 2013, the identical Swarm satellites have been measuring and untangling the different magnetic signals that stem from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere.
 

Front of Swarm satellite
 
As well as a package of instruments to do this, each satellite has an electric field instrument positioned at the front to measure plasma density, drift and velocity.
Rune Floberghagen, ESA’s Swarm misión manager, said, “The electric field instrument is the first ionospheric imager in orbit so it’s very exciting to see such fantastic results that are thanks to this new instrument.
“The dedication of scientists working with data from the mission never ceases to amaze me and we are seeing some brilliant results, such as this, discussed at this week’s meeting.
“Swarm is really opening our eyes to the workings of the planet from deep down in Earth’s core to the highest part of our atmosphere.”

Related articles



Unravelling Earth’s magnetic field
21 March 2017 ESA’s Swarm satellites are seeing fine details in one of the most difficult layers of Earth’s magnetic field to unpick – as well as our planet’s magnetic history imprinted on Earth’s crust.

ESA
Guillermo Gonzalo Sánchez Achutegui

No hay comentarios:

Publicar un comentario

Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.