domingo, 9 de junio de 2013

ESO - ALMA descubre una factoría de cometas

Solucionado el eterno misterio de la formación planetaria gracias a nuevas observaciones de una “trampa de polvo” en torno a una joven estrella.-



  Impresión artística de la factoría de cometas vista por ALMA
 
Utilizando el nuevo conjunto de telescopios ALMA (Atacama Large Millimeter/submillimeter Array) un equipo de astrónomos ha conseguido obtener una imagen de la región que rodea a una joven estrella en la que las partículas de polvo pueden crecer por acumulación. Es la primera vez que este tipo de trampa de polvo ha sido modelada y observada claramente. Soluciona el eterno misterio sobre cómo las partículas de polvo en los discos crecen, alcanzando tamaños mayores, de manera que, finalmente, pueden formar cometas, planetas y otros cuerpos rocosos. Los resultados se han publicado en la revista Science el 7 de junio de 2013.

Imágenes

Impresión artística de la factoría de cometas vista por ALMA
Impresión artística de la factoría de cometas vista por ALMA
 
Imagen de ALMA de la factoría de cometas en torno a Oph-IRS 48
Imagen de ALMA de la factoría de cometas en torno a Oph-IRS 48
 
Imagen obtenida por ALMA y VLT de la factoría de cometas en torno a Oph-IRS 48
Imagen obtenida por ALMA y VLT de la factoría de cometas en torno a Oph-IRS 48
 
Imagen de la trampa de polvo y de la factoría de cometas en torno a Oph-IRS 48 obtenida por ALMA (con anotaciones)
Imagen de la trampa de polvo y de la factoría de cometas en torno a Oph-IRS 48 obtenida por ALMA (con anotaciones) 
 
La ubicación del sistema Oph-IRS 48 en la constelación de Ophiuchus
La ubicación del sistema Oph-IRS 48 en la constelación de Ophiuchus

Videos

ESOcast 58: ALMA descubre una factoría de cometas
ESOcast 58: ALMA descubre una factoría de cometas 
 
Animación de una trampa de polvo
Animación de una trampa de polvo 
 
Acercándonos al sistema Oph-IRS 48
Acercándonos al sistema Oph-IRS 48 
 
Simulación por ordenador de la formación de una trampa de polvo
Simulación por ordenador de la formación de una trampa de polvo

Ver también

Los astrónomos saben que hay numerosos planetas alrededor de otras estrellas. Pero no terminan de comprender del todo cómo se forman y hay muchos aspectos de la formación de los cometas, planetas y otros cuerpos rocosos que siguen siendo un misterio. Sin embargo, utilizando el gran potencial de ALMA, se han llevado a cabo nuevas observaciones que ahora ofrecen respuestas a las grandes preguntas: ¿cómo pueden los diminutos granos de polvo del disco que rodea a estrellas jóvenes crecer y hacerse cada vez más grandes hasta, finalmente, convertirse en escombros, e incluso en rocas que bien pueden superar el metro de tamaño?
Los modelos informáticos sugieren que los granos de polvo crecen tras chocar y quedarse pegados. Sin embargo, cuando estos granos de mayor tamaño chocan de nuevo a grandes velocidades, por lo general se rompen en pedazos y vuelven a su situación anterior. Incluso cuando esto no ocurre, los modelos muestran que los granos de mayor tamaño se moverían rápidamente hacia el interior debido a la fricción entre el polvo y el gas y caerían sobre su estrella anfitriona, sin darles la oportunidad de seguir creciendo.
De algún modo, el polvo necesita un refugio seguro en el que las partículas puedan seguir crecienco hasta que sean lo suficientemente grades como para sobrevivir por sí solas [1]. Ya se había porpuesto antes la existencia de estas “trampas de polvo”, pero  hasta el momento no había pruebas observacionales.
Nienke van der Marel (estudiante de doctorado de la Universidad de Leiden, en los Países Bajos, y autora principal del artículo), junto con sus colaboradores, utilizó ALMA para estudiar el disco en un sistema llamado Oph-IRS 48 [2]. Descubrieron que la estrella estaba circundada por un anillo de gas con un hueco central, probablemente creado por un planeta no visto o una estrella compañera. Observaciones anteriores realizadas con el telescopio VLT (Very Large Telescope) de ESO ya habían mostrado que las pequeñas partículas de polvo también formaban una estructura de anillo similar. Pero la nueva visión de ALMA del lugar en el que se encontraron partículas de polvo mayores que un milímetro ¡era muy diferente!
De entrada, la forma del polvo en la imagen fue una completa sorpresa”, afirma van der Marel. “En lugar del anillo que esperábamos ver, ¡descubrimos algo que claramente tenía forma de anacardo! Tuvimos que convencernos a nosotros mismos de que esa forma era real, pero la fuerte señal y la claridad de las observaciones de ALMA no dejaban lugar a dudas en cuanto a la estructura. Entonces nos dimos cuenta de lo que habíamos descubierto”.
Lo que se ha descubierto es una región en la que los granos de polvo de mayor tamaño han sido atrapados y han podido crecer mucho más al chocar y quedarse pegados. Era una trampa de polvo — justo lo que andaban buscando los teóricos.
Tal y como explica van der Marel: “Es probable que estemos observando una especie de factoría de cometas, ya que las condiciones son las adecuadas para que las partículas crezcan desde un tamaño milimétrico hasta un tamaño cometario. No es probable que el polvo forme planetas a esa distancia de la estrella. Pero en un futuro no muy lejano ALMA podrá observar esas trampas de polvo más cerca de la estrella anfitriona, en las que están en funcionamiento los mismos mecanismos. Este tipo de trampas de polvo sí serían la cuna de planetas recién nacidos”.
La trampa de polvo se forma a medida que partículas de polvo de mayor tamaño se mueven hacia regiones de mayor presión. Los modelos informáticos muestran que estas regiones de alta presión pueden originarse a partir de movimientos del gas situado al extremo de un agujero de gas — justo como el que se ha encontrado en este disco.
La combinación de los trabajos de modelado junto con las observaciones de alta calidad de ALMA hacen de este un proyecto único”, afirma Cornelis Dullemond, del Instituto de Teoría Astrofísica, en Heidelberg (Alemania), experto en evolución del polvo y modelado de discos y miembro del equipo. “Cuando se llevaron a cabo estas observaciones estábamos trabajando en modelos que predecían exactamente este tipo de estructuras: una afortunada coincidencia”.
Las observaciones se llevaron a cabo cuando el conjunto ALMA aún estaba en construcción. Utilizaron los receptores de banda 9 de ALMA [3] — unos dispositivos fabricados en Europa que permiten a ALMA crear las imágenes más nítidas que se han obtenido hasta el momento.
Estas observaciones demuestran que ALMA es capaz de proporcionar ciencia revolucionaria, incluso con menos de la mitad de las antenas en uso”, afirma Ewine van Dishoeck, del Observatorio de Leiden, que ha sido uno de los principales colaboradores del proyecto ALMA durante más de 20 años. “El increíble salto, tanto en sensibilidad como en nitidez, de las imágenes obtenidas en la banda 9, nos ofrece la oportunidad de estudiar aspectos básicos de la formación planetaria de maneras que, sencillamente, antes no eran posibles”.

Notas

[1] El origen de la trampa de polvo, en este caso un vórtice en el gas del disco, tiene periodos de vida de cientos de miles de años. Incluso cuando la trampa de polvo deja de actuar, el polvo acumulado en la trampa tardaría millones de años en dispersarse, proporcionando mucho tiempo a los granos de polvo para crecer.
[2] El nombre es una combinación del nombre de la constelación de la región de formación estelar en la que se encuentra el sistema y del tipo de fuente, siendo Oph asignado por la constelación de Ophiuchus (El Portador de la Serpiente), mientras que  IRS se asigna por la fuente infrarroja. La distancia que separa a la Tierra de Oph-IRS 48 es de unos 400 años luz.
[3] ALMA puede observar en diferentes bandas de frecuencia. La banda 9, que opera en longitudes de onda de entre 0,4 y 0,5 milímetros, es el modo que proporciona, con diferencia, las imágenes más nítidas.

Información adicional

Este trabajo se presenta en el artículo “A major asymmetric dust trap in a transition disk“, por van der Marel et al, que aparece en la revista Science el 7 de junio de 2013.
El equipo está compuesto por Nienke van der Marel (Observatorio de Leiden, Países Bajos), Ewine F. van Dishoeck (Observatorio de Leiden; Instituto Max-Planck de Física Extretarrestre, Garching, Alemania [MPE]), Simon Bruderer (MPE), Til Birnstiel (Centro de Astrofísica Harvard-Smithsonian, Cambridge, EE.UU. [CfA]), Paola Pinilla (Universidad de Heidelberg, Alemania), Cornelis P. Dullemond (Universidad de Heidelberg), Tim A. van Kempen (Observatorio de Leiden; Oficinas de ALMA, Santiago, Chile), Markus Schmalzl (Observatorio de Leiden), Joanna M. Brown (CfA), Gregory J. Herczeg (Instituto Kavli de Astronomía y Astrofísica, Universidad de Peking, Beijing, China), Geoffrey S. Mathews (Observatorio de Leiden) y Vincent Geers (Instituto de Estudios Avanzados de Dublín, Irlanda).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de quince países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, el proyecto astronómico más grande en desarrollo. Actualmente ESO está planificando el European Extremely Large Telescope, E-ELT, el telescopio óptico y de infrarrojo cercano de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El
nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

J. Miguel Mas Hesse
Centro de Astrobiología (CSIC-INTA)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es
Nienke van der Marel
Leiden Observatory
Leiden, The Netherlands
Tlf.: +31 71 527 8472
Móvil: +31 62 268 4136
Correo electrónico: nmarel@strw.leidenuniv.nl
Ewine van Dishoeck
Leiden Observatory
Leiden, The Netherlands
Tlf.: +31 71 527 5814
Correo electrónico: ewine@strw.leidenuniv.nl
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org
Esta es una traducción de la nota de prensa de ESO eso1325.
 ESO
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

No hay comentarios:

Publicar un comentario

Por favor deja tus opiniones, comentarios y/o sugerencias para que nosotros podamos mejorar cada día. Gracias !!!.