Mi lista de blogs

martes, 30 de abril de 2013

Día Internacional del Trabajo: Una mujer ambulante vende caramelos para mantener dos hijos en la Ciudad de Chiclayo.

Aquí en la imagen observamos el movimiento rápido de vehículos en la Calle San José, Chiclayo,Perú. Foto: Archivos del blog.
foo 001.jpg
662K   View   Share   Download  

Hola amigos: A VUELO DE UN QUINDE EL BLOG., en una fría tarde del último 29 de abril de 2013, caminaba por la cuadra seis de la Calle San José, en la Ciudad de Chiclayo,Lambayeque, Perú; y sobre la vereda izquierda siempre camina de arriba abajo una mujer con su hijo en brazos, ofreciendo caramelos a los comensales que salen de un restaurante ubicado en esa cuadra, o simplemente extiende su media bolsa a los transeúntes que pasan por allí muy apurados y son totalmente indiferentes; alguien compra uno o dos caramelos, otros miran a la vendedora y pasan.
 Foto 001.jpg
132K   View   Share   Download  
Aquí en la imagen observamos a Mercedes Rabanal Damián, iniciando nuestra amistad con primeras palabras de saludos. Foto: Archivos del blog.

 Entonces, yo me acerco a ella, por que ya la conozco de vista, pero nunca he conversado con ella y hoy lo intentaré, y le pregunto:
--- Hola amiga, .....cómo estás?
Ella me mira sorprendida y me contesta:
--- Bien señor..
Yo sigo con la conversación por que aceptó hacerlo y le pregunto:
--- Cómo te llamas?
Ella me mira y sonríe y me contesta:
--- Soy : Mercedes Rabanal Damián

Aquí en la imagen observamos a  Mercedes Rabanal Damián, cuando iniciamos una conversación de confianza, Foto : Archivos del blog.

 foto 002.jpg
839K   View   Share   Download 
 
 Me sentí halagado por aceptar mi interés en conocerla, he insisto en seguir preguntando y le dijo:
--- Cuándo naciste?
Ella se sonríe y contesta:
--- Yo nací en Lima el 29 de abril de 1986
Por allí alguien le compra un par de caramelos y continuamos conversando, me siento comprometido, saber que hoy es su cumpleaños y por su puesto en el caso de ella no tiempo para celebrarlo; tiene que seguir ofreciendo sus caramelos para mantener a sus dos hijos, es una respuesta que me sorprendió, casi sin reaccionar bien, le dijo:
--- Feliz Cumpleaños amiga....

 Aquí en la imagen observamos a Mercedes Rabanal Damián. Muy sonriente, justo detrás de una vitrina llena de comidas, a las que ella solo mira todos los días, sin posibilidad de comer si quiera una pizca de esos potajes. En su mano derecha lleva sus bolsas de caramelos y sobre el hombro izquierdo lleva a su hijita. Foto: Archivos del blog.

foto 003.jpg
748K   View   Share   Download  
 
 Tal vez mi felicitación fue muy fría como el clima en ese momento, metí la mano al bolsillo y había algo de dinero, entré al restaurante y le compre una porción de torta, salí y nuevamente, le dije:
--- Feliz Cumpleaños querida  Mercedes
Ella estaba muy emocionada, tal vez era el único regalo que recibía y como quería conocer algo más de ella, le pregunté:
--- Cuántos hijos tienes Mercedes?
Ella me miró, tal vez censurando mi curiosidad, pero me contestó:
--- Tengo dos hijos, el primero es un hombre de 5 años de edad y se llama Bryan, y la segunda es una niña que la tengo aquí y se llama Maricielo y tiene dos años de edad.

 Aquí en la foto observamos a Mercedes Rabanal Damián.  Mirando a un posible cliente mientras conversábamos. Foto: Archivos del blog.

 foto 004.jpg
734K   View   Share   Download
 
Como ya entramos en confianza, nuevamente insistí en conocer algo más y le pregunté:
--- Cuántos años resides en Chiclayo?
Ella aún sonriente, .... me contestó:
--- En esta ciudad vivo cuatro años
Mi curiosidad aumentaba, temía ofenderla con mis preguntas, pero me arriesgue a hacer una más:
--- Dime cuánto ganas en un buen día de trabajo?
Me miro sonriente y dijo:
--- A veces llego a ganar S/. 10.00 soles diarios.

 Aquí en la imagen observamos a  Mercedes Rabanal Damián, detrás de la vitrina que ofrece parrillas, que desgraciadamente ella nunca ha comido. Foto: Archivos del blog

foto 005.jpg
741K   View   Share   Download  

Ya no hice más preguntas, pero me sentía afligido ver a una mujer de apariencia frágil; ganándose la vida como única fuente de trabajo vender caramelos.
 Aquí en la imagen observamosa  Mercedes Rabanal Damián, caminando en la vereda de la cuadra seis de la Calle San José, después de haber conversado con nosotros, lo que agradecemos haber confiado y brindado su confianza. Foto : Archivos del blog.
foto 006.jpg
686K   View   Share   Download   

Hoy 1o. de Mayo Día Internacional del Trabajo, se rinde homenaje a todos los trabajadores del mundo, para los asalariados y con trabajo estable se les brinda con banquetes y disfrutan con grandes jaranas; pero para los miles de millones de anónimos trabajadores ambulantes no hay nada ni nadie que brinde  por lo menos un pan en su día.

Aquí en la imagen observamos parte del vereda izquierda de la cuadra seis de la Calle San José, tal como lo mira todos los díasMercedes Rabanal Damián. Foto : Archivos del blog.
 foto 0012.jpg
820K   View   Share   Download   

Aquí en la imagen observamos parte del frente de la Calle San José, cuadra seis, al fondo a la derecha parte del edificio del Club Unión, y al lejano fondo está el edificio de la Catedral de Chiclayo, probablemente todos los días lo mira así, Mercedes Rabanal Damián. Foto: Archivos del blog
foto 007.jpg
674K   View   Share   Download  

Aquí en la imagen observamos a la vereda izquierda de la cuadra seis de la Calle San  José; donde trabaja, Mercedes Rabanal Damián. Foto: Archivos del blog
 fotoo 001.jpg
594K   View   Share   Download 

Mercedes Rabanal Damián, una humilde mujer vendedora de caramelos, representa a la mujer luchadora que hace su trabajo independiente ganando pocos centavos en su diario trajín con mucha dignidad; tal vez busca una oportunidad para mejorar el nivel de su vida; aún no se presenta nada, si alguien puede ayudarla no lo piense dos veces, hágalo y con su  cooperación logrará la felicidad de esta virtuosa emprendedora.
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

lunes, 29 de abril de 2013

ESA - Webcast: About Debris

Hi My Friends: A VUELO DE UN QUINDE EL BLOG., A replay of the closing press briefing at the 6th European Conference on Space Debris, 25 April, ESA/ESOC, Darmstadt, Germany. The programme runs about 90 mins.
The press conference was chaired by Heiner Klinkrad, Head of ESA's Space Debris Office, and included senior space debris experts from the DLR German Aerospace Center, France's CNES space agency, Italy's ASI space agency, the UK Space Agency, the Committee on Space Research (COSPAR) and the International Academy of Astronautics (see names below).




 Active Debris Removal requires navigating in the close vicinity of the target. This might be achieved by Lidar means.
 

A first analysis on the stability of the current environment independent of human measures was conducted by NASA in 2009, which examined a future scenario in which no further objects are added to the space environment (i.e. no launches, no debris release).
The results, which are confirmed by ESA’s simulations, show that the number of debris objects would continue to grow even under these idealised conditions – under which a collision rate of once every 10 years can be assumed.
This is a clear indicator that the population of large and massive objects has reached a critical density in LEO. In turn, this means that the number of large and massive (mostly physically intact) objects must be reduced.
The current LEO environment contains about 3300 intact objects. An ESA analysis shows that the (lower) level  of around 2500 intact objects (i.e. the status in the mid 1990s) would have a 50% probability of decreasing the overall debris population. If this is considered to be a desirable goal for remediation, the number of intact objects has to be reduced while the world’s spaceflight activities continue – which sees the placement of about 72 objects into the LEO environment per year (average over the eight years 2004-12). 
However, limiting the launch rate and a further reduction of the allowed lifetime (which are two options to reduce the number of intact objects) cannot be mandated and would not be very efficient.
Therefore, the only remaining option is to actively remove large objects now in orbit, which would provide several benefits:
  • The most critical objects can be removed from the environment first (the standard 25-year lifetime rule does take into account to environmental criticality)
  • Decommissioned objects can also be removed
  • A controlled de-orbit can be performed (as large removal targets typically are also most critical in terms of on-ground risk)
Studies at NASA and ESA show that with a removal sequence planned according to target mass, the environment can be stabilised when on the order of 10 objects are removed from LEO per year. Active removal can be more efficient in terms of the number of collisions prevented versus objects removed when the following principles are applied for the selection of removal targets:
  • The selected objects should have a high mass (they have the largest environmental impact in case of collision)
  • Should have high collision probabilities (e.g. they should be in densely populated regions)
  • Should be in high altitudes (where the orbital lifetime of the resulting fragments is long)
Long-term environment simulations can be used to analyse orbital regions that are hotspots for collisions. The most densely populated region in LEO is around 800- to 1000-km altitude at high inclinations. The collision hot spots can be ranked by the number of collisions predicted to occur under a ‘business as usual’ scenario.
High ranking hot spot regions are at around
  • 1000 km and 82 deg inclination
  • 800 km and 98 deg inclination
  • 850 km and 71 deg inclination
The concentration of critical objects in narrow orbital bands offers the advantage that removal missions can be designed for one orbit type and then repeatedly launched to perform their clean up. Besides the criteria above, an additional criterion would be the number of objects of one type contained in each of the hot spot regions.
Active debris removal
Active debris removal
The concentration of critical objects in narrow orbital bands offers the advantage that removal missions can be designed for one orbit type and then repeatedly launched to perform their clean up. Besides the criteria above, an additional criterion would be the number of objects of one type contained in each of the hot spot regions.
While removal targets should be selected from a global perspective, legal constraints dealing with the ownership of space debris objects, and the validation thereof, cannot be neglected.
Also it should be kept in mind that legal responsibility for a coupled remover/target stack (i.e. when a removal spacecraft attaches itself to a inoperative body for deorbiting) is shared. While removal technology should be generic, i.e. applicable to a wide range of removal targets that may also include non-ESA objects, special emphasis on firm agreements with the owners of the object are required.
Actions to counter the exponential growth of space debris, such as mitigation and active removal, are most effective when they are applied as soon as possible. The further the number of critical intact objects in the environment deviates from a sustainable level, the more objects will have to be removed to suppress any additional growth and the multiplying effects thereof.
ESA’s internal studies have shown that continuous removal actions starting in 2060 will only have 75% of the beneficial effect compared to an immediate start.

A replay of the closing press briefing at the 6th European Conference on Space Debris, 25 April, ESA/ESOC, Darmstadt, Germany. The programme runs about 90 mins.
The press conference was chaired by Heiner Klinkrad, Head of ESA's Space Debris Office, and included senior space debris experts from the DLR German Aerospace Center, France's CNES space agency, Italy's ASI space agency, the UK Space Agency, the Committee on Space Research (COSPAR) and the International Academy of Astronautics (see names below).
 
Watch live streaming video from eurospaceagency at livestream.com
  • Chair Heiner Klinkrad, Head of ESA Space Debris Office ( and representing the International Academy of Astronautics, IAA)
  • Thomas Schildknecht, International Committee on Space Research (COSPAR)
  • Manuel Metz, Deutsches Zentrum für Luft- und Raumfahrt, DLR
  • Christophe Bonnal, Centre national d'études spatiales (CNES / FR)
  • Claudio Portelli, Agenzia Spaziale Italiana (ASI / IT)
  • Hugh Lewis, UK Space Agency (UKSA)
  • Moderator: Bernhard von Weyhe, ESA Communications
ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@hotmail.com
ayabaca@gmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

ESA - Herschel demuestra que el agua hallada en Júpiter procede del impacto de un cometa

Hola amigos: A VUELO DE UN QUINDE EL BLOG., hemos recibido información de la Agencia Espacial Europea- ESA-, donde se demuestra por una muestra captada por el ESA’s Herschel space observatory, el misterio de existencia de agua helada en las capas más altas de la atmósfera de Júpiter.....
ESA, dice:......"El observatorio espacial Herschel de la ESA ha resuelto el misterio sobre el origen del agua presente en las capas más altas de la atmósfera de Júpiter, aportando pruebas concluyentes que indican que procede del impacto del cometa Shoemaker-Levy 9 en julio de 1994..."
ESA, agrega..." Durante aquella espectacular colisión, una cadena de 21 fragmentos del cometa se precipitaron sobre el hemisferio sur de Júpiter a lo largo de toda una semana, dejando unas oscuras cicatrices en la atmósfera del planeta que fueron visibles durante varias semanas. .."
Amigos los invito a leer la versión completa de ESA......



  (81.70 kB
Lugar de impacto G del cometa Shoemaker-Levy 9

This mosaic of WFPC-2 images shows the evolution of the G impact site on Jupiter (the 21 comet fragments of Shoemaker-Levy 9 were each assigned a corresponding letter to identify the impact site; G represents the 7th fragment to strike the planet. It was also the largest impact.).
The images from lower right to upper left show: the impact plume at 07/18/94 07:38 UT (about 5 minutes after the impact); the fresh impact site at 07/18/94 at 09:19 UT (1.5 hours after impact); the impact site after evolution by the winds of Jupiter (left), along with the L impact (right), taken on 07/21/94 at 06:22 UT (3 days after the G impact and 1.3 days after the L impact); and further evolution of the G and L sites due to winds and an additional impact (S) in the G vicinity, taken on 07/23/94 at 08:08 UT (5 days after the G impact).
Over 15 years later, ESA's Herschel space observatory has linked water in Jupiter's upper atmosphere to the impact of comet Shoemaker-Levy 9. Read full story: Herschel links Jupiter's water to comet impact


24 abril 2013 El observatorio espacial Herschel de la ESA ha resuelto el misterio sobre el origen del agua presente en las capas más altas de la atmósfera de Júpiter, aportando pruebas concluyentes que indican que procede del impacto del cometa Shoemaker-Levy 9 en julio de 1994.
Durante aquella espectacular colisión, una cadena de 21 fragmentos del cometa se precipitaron sobre el hemisferio sur de Júpiter a lo largo de toda una semana, dejando unas oscuras cicatrices en la atmósfera del planeta que fueron visibles durante varias semanas. 
Este imponente suceso fue la primera observación directa de una colisión fuera de nuestro propio planeta. Fue seguido en directo por astrómonos aficionados y profesionales de todo el mundo con la ayuda de telescopios en tierra y con el Telescopio Espacial NASA/ESA Hubble.
El Observatorio Espacial Infrarrojo de la ESA fue lanzado en 1995 y fue el primero en detectar y estudiar la presencia de agua en las capas más altas de la atmósfera de Júpiter. Por aquel entonces ya se presentó la hipótesis de que el agua podría proceder del cometa Shoemaker-Levy 9, pero faltaban pruebas que la respaldasen. 
Los científicos fueron capaces de excluir un origen interno, como por ejemplo vapor de agua procedente de capas más bajas de la atmósfera del planeta, ya que el vapor no es capaz de atravesar la ‘trampa fría’ que separa la estratosfera de la capa visible de nubes en la troposfera de Júpiter. 
Por lo tanto, el agua en la estratosfera joviana tenía que proceder del exterior. Pero hubo que esperar 15 años para poder determinar su origen, hasta que Herschel utilizó sus sensibles ojos infrarrojos para estudiar la distribución horizontal y vertical de la huella química del agua en Júpiter.
Distribución de agua en la atmósfera de Júpiter
Las observaciones de Herschel determinaron que había 2-3 veces más agua en el hemisferio sur de Júpiter que en el norte, con la mayor parte de ella concentrada cerca de los lugares donde había impactado el cometa en 1994. Por otra parte, el agua sólo se encontraba a gran altitud. 
“Sólo Herschel fue capaz de proporcionar la resolución espectral necesaria para encontrar el eslabón perdido entre la presencia de agua en Júpiter y el impacto del cometa Shoemaker-Levy 9 en 1994”, explica Thibault Cavalié del Laboratorio de Astrofísica de Burdeos, autor principal del artículo publicado enAstronomy and Astrophysics. 
“Según nuestros modelos, un 95% del agua en la estratosfera de Júpiter procede del impacto del cometa”. 
Otra posible fuente de agua sería una lluvia continua de pequeñas partículas de polvo interplanetario. Pero, en este caso, el agua debería estar distribuida de forma uniforme en todo el planeta y se tendría que haber filtrado a cotas más bajas.
Por otra parte, una de las lunas de hielo de Júpiter podría haber aportado agua al planeta a través de un gigante chorro de vapor, como muestran las observaciones de Herschel de la luna Encélado. Esta hipótesis también ha sido descartada, ya que ninguna de las lunas jovianas se encontraba en el lugar apropiado para aportar agua con la distribución observada.

Aproximación del cometa Shoemaker-Levy 9 a Júpiter
Finalmente, los científicos también descartaron la hipótesis de que los impactos observados por astrónomos aficionados en 2009 y 2010 pudieran haber realizado una aportación significativa, o que las observaciones pudiesen ser el resultado de variaciones locales en la temperatura de la atmósfera de Júpiter. 
Shoemaker-Levy 9 era el único culpable. 
“Los cuatro planetas gigantes del Sistema Solar exterior presentan agua en sus atmósferas, pero la podrían haber obtenido a través de cuatro mecanismos diferentes”, explica Cavalié. “En Júpiter, está claro que el aporte del cometa Shoemaker-Levy 9 es el más importante, aunque las otras fuentes también podrían haber contribuido en menor medida”. 
“Gracias a las observaciones de Herschel, hemos sido capaces de relacionar el impacto de un cometa – que capturó la atención del público y se siguió en directo desde todo el mundo – con la presencia de agua en Júpiter, resolviendo un misterio que nos había mantenido intrigados durante casi dos décadas”, añade Göran Pilbratt, científico del proyecto Herschel para la ESA.
Las observaciones realizadas durante este estudio son un adelanto de las que realizará la futura misión JUICE de la ESA, que partirá hacia el sistema joviano en 2022, donde estudiará la distribución de los ingredientes de la atmósfera de Júpiter con mucho más detalle.

Nota a los Editores 
“The spatial distribution of water in the stratosphere of Jupiter from Herschel-HIFI and –PACS observations,” de T. Cavalié et al. está publicado enAstronomy & Astrophysics, 553, A21, mayo de 2013. 
Las observaciones fueron realizadas durante el Programa Clave de Tiempo Garantizado “Agua y química asociada en el Sistema Solar” de la misión Herschel. Las observaciones de HIFI fueron realizadas en julio de 2010 y las de PACS en octubre de 2009 y diciembre de 2010. Sus resultados se complementaron con datos sobre la temperatura estratosférica en Júpiter tomados por el telescopio infrarrojo IRTF de la NASA durante el mismo periodo. 
Herschel es un observatorio espacial de la ESA con instrumentos científicos desarrollados por consorcios de investigadores europeos, con una importante participación de la NASA.
  ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

domingo, 28 de abril de 2013

NASA - Saunders Island and Wolstenholme Fjord

Hi my friends: A VUELO DE UN QUINDE EL BLOG., We have received of NASA a beautiful photography of the IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord.... that is a marvel of the nature.........




Download Image

› Full Size
 



Wolstenholme Fjord, Greenland

My latest scanning project keeps turning up gems. I am so glad I shot this panorama of Wolstenholme Fjord — purportedly the only place on earth where three active glaciers join together. If I could have anticipated today’s technology, I might have made a much more detailed shot than this one – consisting of just two images shot with my trusty Pentax ME Super on grainy Plus-X way back in 1986.
thedude.com
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

NASA - NASA Probe Observes Meteors Colliding With Saturn's Rings

Hi my  friends: A VUELO DE UN QUINDE EL BLOG., We have received of the NASA, the information about the evidences of the shocks of meteorites against the rings of the planet Saturn...these photographies have been caught ..by NASA's Cassini spacecraft, between 2009 and 2012...
Blame it on the Rain (from Saturn's Rings)
04.10.13
 
This artist's concept illustrates how charged water particles flow into the Saturnian atmosphere from the planet's rings 
This artist's concept illustrates how charged water particles flow into the Saturnian atmosphere from the planet's rings, causing a reduction in atmospheric brightness. Image credit: NASA/JPL-Caltech/Space Science Institute/University of Leicester › Full image and caption
A new study tracks the "rain" of charged water particles into the atmosphere of Saturn and finds there is more of it and it falls across larger areas of the planet than previously thought. The study, whose observations were funded by NASA and whose analysis was led by the University of Leicester, England, reveals that the rain influences the composition and temperature structure of parts of Saturn's upper atmosphere. The paper appears in this week's issue of the journal Nature.
“Saturn is the first planet to show significant interaction between its atmosphere and ring system," said James O’Donoghue, the paper's lead author and a postgraduate researcher at Leicester. “The main effect of ring rain is that it acts to 'quench' the ionosphere of Saturn. In other words, this rain severely reduces the electron densities in regions in which it falls."
O’Donoghue explains that the ring's effect on electron densities is important because it explains why, for many decades, observations have shown those densities to be unusually low at certain latitudes on Saturn. The study also helps scientists better understand the origin and evolution of Saturn's ring system and changes in the planet's atmosphere.
"It turns out that a major driver of Saturn's ionospheric environment and climate across vast reaches of the planet are ring particles located some 36,000 miles [60,000 kilometers] overhead," said Kevin Baines, a co-author on the paper, based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The ring particles affect both what species of particles are in this part of the atmosphere and where it is warm or cool."
In the early 1980s, images from NASA's Voyager spacecraft showed two to three dark bands on Saturn, and scientists theorized that water could have been showering down into those bands from the rings. Those bands were not seen again until this team observed the planet in near-infrared wavelengths with the W.M Keck Observatory on Mauna Kea, in Hawaii, in April 2011. The effect was difficult to discern because it involves looking for a subtle emission from bright parts of Saturn. It required an instrument like that on Keck, which can split up a large range of light.
The ring rain's effect occurs in Saturn's ionosphere, where charged particles are produced when the otherwise neutral atmosphere is exposed to a flow of energetic particles or solar radiation. When the scientists tracked the pattern of emissions of a particular hydrogen ion with three protons (triatomic hydrogen), they expected to see a uniform planet-wide infrared glow. What they observed instead was a series of light and dark bands – with areas of reduced emission corresponding to water-dense portions of Saturn’s rings and areas of high emission corresponding to gaps in the rings.
They surmised that charged water particles from the planet’s rings were being drawn towards the planet along Saturn's magnetic field lines and were neutralizing the glowing triatomic hydrogen ions. This leaves large “shadows” in what would otherwise be a planet-wide infrared glow. These shadows cover some 30 to 43 percent of the planet's upper atmosphere surface from around 25 to 55 degrees latitude. This is a significantly larger area than suggested by images from NASA’s Voyager mission.
Both Earth and Jupiter have an equatorial region that glows very uniformly. Scientists expected this pattern at Saturn, too, but they instead saw dramatic differences at different latitudes.
"Where Jupiter is glowing evenly across its equatorial regions, Saturn has dark bands where the water is falling in, darkening the ionosphere," said Tom Stallard, a paper co-author at Leicester. "We're now also trying to investigate these features with an instrument on NASA's Cassini spacecraft. If we're successful, Cassini may allow us to view in more detail the way that water is removing ionized particles, such as any changes in the altitude or effects that come with the time of day."
Keck observing time was funded by NASA, with a letter of support from the Cassini mission to Saturn. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. The mission is managed by JPL for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology in Pasadena, Calif.
 
 NASA Probe Observes Meteors Colliding With Saturn's Rings
04.25.13
 
Five images of Saturn's rings, taken by NASA's Cassini spacecraft between 2009 and 2012 
Five images of Saturn's rings, taken by NASA's Cassini spacecraft between 2009 and 2012, show clouds of material ejected from impacts of small objects into the rings. Image credit: NASA/JPL-Caltech/Space Science Institute/Cornell › Full image and caption
Fireball Sstreaking over Russia 
 The meteoroids that NASA's Cassini spacecraft detected crashing into Saturn's rings are comparable in size to the meteor that hurtled over Russia in February 2013. Image credit: Copyright M. Ahmetvaleev
› Full image and caption

This illustration depicts the shearing of an initially circular cloud of debris 
This illustration depicts the shearing of an initially circular cloud of debris as a result of the particles in the cloud having differing orbital speeds around Saturn. Image credit: NASA/Cornell
› Full image and caption
› View animated version of this graphic

PASADENA, Calif. -- NASA's Cassini spacecraft has provided the first direct evidence of small meteoroids breaking into streams of rubble and crashing into Saturn's rings.
These observations make Saturn's rings the only location besides Earth, the moon and Jupiter where scientists and amateur astronomers have been able to observe impacts as they occur. Studying the impact rate of meteoroids from outside the Saturnian system helps scientists understand how different planet systems in our solar system formed.
The solar system is full of small, speeding objects. These objects frequently pummel planetary bodies. The meteoroids at Saturn are estimated to range from about one-half inch to several yards (1 centimeter to several meters) in size. It took scientists years to distinguish tracks left by nine meteoroids in 2005, 2009 and 2012.
Details of the observations appear in a paper in the Thursday, April 25 edition of Science.
Results from Cassini have already shown Saturn's rings act as very effective detectors of many kinds of surrounding phenomena, including the interior structure of the planet and the orbits of its moons. For example, a subtle but extensive corrugation that ripples 12,000 miles (19,000 kilometers) across the innermost rings tells of a very large meteoroid impact in 1983.
"These new results imply the current-day impact rates for small particles at Saturn are about the same as those at Earth -- two very different neighborhoods in our solar system -- and this is exciting to see," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It took Saturn's rings acting like a giant meteoroid detector -- 100 times the surface area of the Earth -- and Cassini's long-term tour of the Saturn system to address this question."
The Saturnian equinox in summer 2009 was an especially good time to see the debris left by meteoroid impacts. The very shallow sun angle on the rings caused the clouds of debris to look bright against the darkened rings in pictures from Cassini's imaging science subsystem.
"We knew these little impacts were constantly occurring, but we didn't know how big or how frequent they might be, and we didn't necessarily expect them to take the form of spectacular shearing clouds," said Matt Tiscareno, lead author of the paper and a Cassini participating scientist at Cornell University in Ithaca, N.Y. "The sunlight shining edge-on to the rings at the Saturnian equinox acted like an anti-cloaking device, so these usually invisible features became plain to see."
Tiscareno and his colleagues now think meteoroids of this size probably break up on a first encounter with the rings, creating smaller, slower pieces that then enter into orbit around Saturn. The impact into the rings of these secondary meteoroid bits kicks up the clouds. The tiny particles forming these clouds have a range of orbital speeds around Saturn. The clouds they form soon are pulled into diagonal, extended bright streaks.
"Saturn's rings are unusually bright and clean, leading some to suggest that the rings are actually much younger than Saturn," said Jeff Cuzzi, a co-author of the paper and a Cassini interdisciplinary scientist specializing in planetary rings and dust at NASA's Ames Research Center in Moffett Field, Calif. "To assess this dramatic claim, we must know more about the rate at which outside material is bombarding the rings. This latest analysis helps fill in that story with detection of impactors of a size that we weren't previously able to detect directly."
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter and its two onboard cameras. The imaging team consists of scientists from the United States, England, France and Germany. The imaging operations center is based at the Space Science Institute in Boulder, Colo.
For images of the impacts and information about Cassini, visit:
 and  
 
 
Jia-Rui Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov

 NASA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

NASA - Supersonic Aircraft Model

Hi My Friends: A VUELO DE UN QUINDE EL BLOG., We have received information of the models of super planes who will be constructed in the near future...It is a work that investigates it....NASA at  NASA's Glenn Research Center......




Download Image

› Full Size 
 



Download Image

› Full Size 

In the Vortex of Power

John Wargo, lead technician at NASA Glenn's Propulsion System Laboratory (PSL) is performing an inspection on the inlet ducting, upstream of the Honeywell ALF 502 engine that was recently used for the NASA Engine Icing Validation test.

This test allows engine manufacturers to simulate flying through the upper atmosphere where large amounts of icing particles can be ingested and cause flame outs or a loss of engine power on aircraft. This test was the first of its kind in the world and was highly successful in validating PSL's new capability. No other engine test facility has this capability.

Glenn is working with industry to address this aviation issue by establishing a capability that will allow engines to be operated at the same temperature and pressure conditions experienced in flight, with ice particles being ingested into full scale engines to simulate flight through a deep convective cloud.

The information gained through performing these tests will also be used to establish test methods and techniques for the study of engine icing in new and existing commercial engines, and to develop data required for advanced computer codes that can be specifically applied to assess an engine's susceptibility to icing in terms of its safety, performance and operability.

Image Credit: NASA
Bridget R. Caswell (Wyle Information Systems, LLC)
NASA Glenn Research Center 21000 Brookpark Road Cleveland, OH 44135 Phone: (216) 433-4000 › Glenn Map and Directions Plum Brook Station 6100 Columbus Avenue
www.nasa.gov/centers/glenn - En caché NASA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

nsf.gov - Discovery - Trail of Fire Leads to Less Snow, Threatened Water Resources

Hi My Friends: A VUELO DE UN QUINDE EL BLOG., We have received information of the scientific of the National Science Foundation(NSF) about the origin of the forest fires, which happened in New Mexico's Jemez River Basin on June 26, 2011, at 1 p.m. local time......
They said........."The following is part seven in a series on the National Science Foundation's Critical Zone Observatories (CZO) Network. Visit part one, part two, part three, part four, part five and part six.
If a tree falls in a forest and no one is around to hear it, does it make a sound?
The answer is yes, if it happened in New Mexico's Jemez River Basin on June 26, 2011, at 1 p.m. local time.
The tipping of one tree as it creaked and fell hinted at a crackle soon to come, a fast-burning wildfire. Ultimately, the fire blazed through a large part of a 1.5 million-acre national forest...."
Also they said......."To find out, scientists at the National Science Foundation (NSF) Jemez River Basin and Santa Catalina Mountains Critical Zone Observatory (CZO), one of six such NSF CZOs in watersheds across the country, lit out for the hills.
The Jemez River Basin and Santa Catalina Mountains CZO is formed by twin sites: one in the Jemez River Basin in the Valles Caldera National Preserve north of Albuquerque, N.M., in the greater Rio Grande Basin; the other in the Santa Catalina Mountains northeast of Tucson, Ariz., in the Colorado River Basin....."
 I invite them to read the original version in its entirety............

 Photo of smoke from a forest fire going up in to the sky

New Mexico's 2011 Las Conchas Fire as it races down the flanks of the Jemez Mountains.
Credit: Wikimedia Commons
Download the high-resolution JPG version of the image. (247 KB)
 Burned tress at NSF's Jemez River Basin CZO and the Valles Caldera National Preserve.

Ghosts of the forest stand guard over NSF's Jemez River Basin Critical Zone Observatory and the Valles Caldera National Preserve.
Credit: Valles Caldera National Preserve
Download the high-resolution JPG version of the image. (690 KB)

 On Rabbit Mountain, N.M., scientists ski through the healthy forest
On Rabbit Mountain, N.M., scientists survey slopes with unburned healthy forests.
Credit: Paul Brooks
Download the high-resolution JPG version of the image. (157 KB)
 
Scientist skis through the burned forest

A comparison survey of Rabbit Mountain's badly burned forests.
Credit: Paul Brooks
Download the high-resolution JPG version of the image. (102 KB)
 Scientist Adrian Harpold digs out an instrument used to measure snowmelt chemistry.
Scientist Adrian Harpold digs out an instrument used to measure snowmelt chemistry.
Credit: Allison Peterson
Download the high-resolution JPG version of the image. (27 KB)
 Paul Brooks collects snow samples
Paul Brooks collects samples for snow density, chemistry, and physical structure.
Credit: Brian Chaszar
Download the high-resolution JPG version of the image. (1 MB)

The following is part seven in a series on the National Science Foundation's Critical Zone Observatories (CZO) Network. Visit part one, part two, part three, part four, part five and part six.
If a tree falls in a forest and no one is around to hear it, does it make a sound?
The answer is yes, if it happened in New Mexico's Jemez River Basin on June 26, 2011, at 1 p.m. local time.
The tipping of one tree as it creaked and fell hinted at a crackle soon to come, a fast-burning wildfire. Ultimately, the fire blazed through a large part of a 1.5 million-acre national forest.
On the day the fire started, strong, unpredictable winds blew through the trees, rustling leaves and creaking dead wood. Perhaps in a gust, a lone tree fell. On the way down, it took out a power line and sparked a fire that--by high noon the next day--had burned 43,000 acres, an acre every two seconds.
At sundown that next day, the Las Conchas Fire, as it came to be called, still ran wild. The toll had climbed to more than 61,000 acres of forest. Egged on by north winds, it jumped the trails of Pajarito Mountain Ski Area. Then it turned and raged south, threatening the town of Cochiti, N.M.
Within four days, it had singed more than 103,000 acres, making it the largest fire in New Mexico history at the time.
The forest and the watershed--the critical zone--left behind
What happened to the forests, rivers and streams the Las Conchas Fire left behind?
To find out, scientists at the National Science Foundation (NSF) Jemez River Basin and Santa Catalina Mountains Critical Zone Observatory (CZO), one of six such NSF CZOs in watersheds across the country, lit out for the hills.
The Jemez River Basin and Santa Catalina Mountains CZO is formed by twin sites: one in the Jemez River Basin in the Valles Caldera National Preserve north of Albuquerque, N.M., in the greater Rio Grande Basin; the other in the Santa Catalina Mountains northeast of Tucson, Ariz., in the Colorado River Basin.
In addition to the Jemez River Basin and Santa Catalina Mountains site in New Mexico and Arizona, NSF CZOs are located in the Southern Sierra Nevada, Christina River Basin on the border of Delaware and Pennsylvania, Susquehanna Shale Hills in Pennsylvania, Boulder Creek in the Colorado Rockies, and Luquillo National Forest in Puerto Rico.
CZO scientists provide a new understanding of the critical zone--the thin veneer of Earth that extends from the top of the forest canopy to the base of weathered bedrock.
At the Jemez River and Santa Catalina Mountains CZO, researchers are asking questions such as: How does climate variation affect arid and semi-arid ecosystems? And, how do feedbacks between critical zone structure and the cycling of water and carbon alter short-term hydrology and long-term landscape evolution?
The water cycle, the breakdown of rocks and the eventual formation of soil, the evolution of rivers and valleys, the patterns of plant growth and landforms, all result from processes that take place in the critical zone.
"The critical zone is our living environment," says Enriqueta Barrera, program director in NSF's Division of Earth Sciences, which funds the CZO network. "The CZOs offer us new knowledge about this important zone and its response to climate and land-use change."
The CZOs are the first systems-based observatories dedicated to understanding how Earth's surface processes are coupled, she says. "They will help us predict how the critical zone affects the ecosystem services on which society depends."
Fire burns long after it's out
Water is at the top of that list of ecosystem services.
The freshwater supplies of the American West rely, for the most part, on snow.
As snow melts into water, it begins a journey that starts in the mountains and ends in faucets. When people turn on the shower or the sprinkler, they're watering themselves, lawns and food crops with melted snow.
The Colorado River, the Rio Grande and other rivers in the intermountain west are the main sources of water for some of the driest parts of the country, say Jemez River Basin and Santa Catalina Mountains CZO scientists Jon Chorover and Paul Brooks of the University of Arizona and Adrian Harpold of the University of Colorado.
"Their flows are predominantly fed by snowmelt from high-elevation forests and meadows," says Brooks.
Snow-covered forests are "a critical source of water in the western U.S.," agrees Chorover. "Forests' ability to 'hold snow' can be affected by fires, tree diseases, insect-caused die-offs and other factors."
The Las Conchas Fire provided a unique opportunity to "evaluate how forest fires interact with a changing climate," says Harpold, first author of a recent paper on the fire's effects on winter snow and spring snowmelt published in the journal Ecohydrology. Brooks and other scientists are co-authors.
"Forest fires have been increasing in size and severity for the last several decades," Harpold says. "Drier and warmer than average conditions in New Mexico in 2011 contributed to fires like Las Conchas.
"When the fire removed the forest canopy, more water vapor was lost from the snow surface to the dry atmosphere, reducing the amount of water stored in the snowpack and released the following spring."
In essence, the scientists found, areas not burned in the fire retained more snow--and snowmelt water.
Into the Valles Caldera
The Valles Caldera National Preserve, it's called, a parkland that surrounds the Valles Caldera, a 13.7 mile wide volcanic caldera in the Jemez Mountains of northern New Mexico. The preserve overlaps the Jemez River Basin CZO.
Valles Caldera National Preserve was the site of the scientists' study; their research was conducted on Rabbit Mountain near the park's southern boundary.
In November 2011, the researchers placed instruments in several catchments, or river basins, on Rabbit Mountain. The resulting information is being used to better understand the effects of fire on the water, carbon and energy cycles of the entire Jemez River Basin.
"The Jemez River Basin CZO is perfectly situated to learning how fire affects water resources," says Brooks.
In the winter and spring of 2012, Brooks and Harpold, along with other researchers and students, collected and analyzed thousands of data points on snow depth and density in burned and unburned forests on Rabbit Mountain.
"We obtained one of the most complete data sets to date on snow hydrology and fire," says Brooks.
Spruce-fir forests dominate Rabbit Mountain's heights; ponderosa pines and oak scrublands cover the lower mountain.
Whether in spruce-fir or pine-oak, the Las Conchas Fire left much of Rabbit Mountain with severe burns. Dead, limbless trees, ghosts of the forest, line the horizon.
In unburned forests, about one-third of the fresh snow that fell in the winter of 2012 was caught in trees before it reached the ground. There shade and wind protection allowed it to accumulate over the winter.
Where trees were lost to the fire, more fresh snowfall made it to the ground. In the end, however, that was a double-edged sword: lack of shelter from the forest canopy resulted in more of the snowpack disappearing over the winter.
"Such changes in snowpack depth have important ramifications," says Chorover, "for ecological health and for downstream water resources."
After the Las Conchas Fire, if a tree falls in the forest and no one is around to hear it, does it make a sound?
If you're listening for burbling spring brooks or streaming kitchen faucets, you may hear nothing but drip, drip, drip. Or silence.
--  Cheryl Dybas, NSF (703) 292-7734   cdybas@nsf.gov
Related Websites
NSF Critical Zone Observatory Network:
 http://criticalzone.org/national/
NSF Jemez River Basin and Santa Catalina Mountains CZO:
 http://criticalzone.org/jemez-catalina/
NSF News Release: How Is Earth's Water System Linked With Land Use, Climate Change and Ecosystems?:
 http://www.nsf.gov/news/news_summ.jsp?cntn_id=125434&org=NSF&from=news
NSF Publication: Discoveries in Sustainability:  
 The National Science Foundation (NSF)
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

NASA - Mars Stereo View from 'John Klein' to Mount Sharp -- Raw

Hi My Friends: A VUELO DE UN QUINDE EL BLOG., we have  receipt of  NASA ... this Mars' spectacular vision.. of the Mount Sharp on the southern horizon........




Download Image

› Full Size 
 
NASA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!

NASA - NASA Opens Media Accreditation for California Solar Mission Launch

Hi My Fiends: A VUELO DE UN QUINDE EL BLOG., We have received the information about the investigation that is tried to do by THE SUN,... of  NASA.....and NASA says to us:
"..News media planning to cover the launch of NASA's Interface Region Imaging Spectrograph (IRIS) mission on June 26 at Vandenberg Air Force Base in California should apply for accreditation by June 18.

Deployment of IRIS from the Orbital Sciences L-1011 carrier aircraft aboard a Pegasus rocket is targeted for 10:27 p.m. EDT at an altitude of 39,000 feet over the Pacific Ocean. That location is approximately 100 miles northwest of Vandenberg off the central coast of California.

News media can cover the prelaunch news conference and mission science briefing, which will be followed by an opportunity to see the L-1011 aircraft with the attached Pegasus rocket carrying IRIS. For launch, news media will be able to see the deployment of the Pegasus rocket from the L-1011 via live video provided by a NASA chase plane. A news conference will be held after the launch. ..."
 I invite my dear friends to read the original version of  NASA........

Spotting Ultrafine Loops in the Sun's Corona
06.12.12
 
Left: An image of a magnetic loop complex as captured on July 22, 2011 by SDO. Right: This is the same area as captured by the NST.  
Left: An image of a magnetic loop complex as captured on July 22, 2011 by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. The image shows light in the 193 Angstrom wavelength. Credit: NASA/SDO/AIA
Right: This covers the area of the sun roughly in the middle of that shown in the SDO image on the left, as captured by the New Solar Telescope. Together the images were used to observe and analyze ultrafine loops of magnetized material in the sun's atmosphere. Credit: NST
› View SDO image larger
› View NST image larger


A key to understanding the dynamics of the sun and what causes the great solar explosions there relies on deciphering how material, heat and energy swirl across the sun's surface and rise into the upper atmosphere, or corona. Tracking the constantly moving material requires state-of-the-art telescopes with the highest resolution possible. By combining images from NASA's Solar Dynamics Observatory (SDO) and a new generation telescope called the New Solar Telescope (NST) at Big Bear Solar Observatory in Big Bear City, Calif. scientists have for the first time observed a new facet of the system: especially narrow loops of solar material scattered on the sun's surface, which are connected to higher lying, wider loops. These ultrafine loops, and their wider cousins may also help with the quest to determine how temperatures rise throughout the corona.

"We're used to seeing magnetic loops on the sun," says Philip Goode of the New Jersey Institute of Technology in Newark, NJ, who was a co-author on a paper on these results in the Astrophysical Journal on May 1, 2012. "But we've never seen ones lying so low, that were so cold, or that were so narrow. These loops are 10 times narrower and at least 10 times cooler than the higher loops often seen by SDO."

Goode and his colleagues, Wenda Cao and Haisheng Ji used the two telescopes to observe these loops in data from July 22, 2011. The combination of NST and SDO allowed the researchers to trace the flow of energy from the cooler ultrafine loops observed with NST to cospatial and cotemporal brightenings seen by SDO in the overlying million degree corona. In the NST observations, the loops show a nearly consistent width of what Goode says is a "surprisingly narrow diameter" of only about 60 miles across. The team aligned images from the NST, which can measure magnetic fields to high resolution, with the SDO images to find the magnetic footprint of these loops on the sun. The magnetic maps showed that the loops lined up with fine lanes on the sun that separate what's known as granules – cells on the star's surface that can be loosely understood as bubbles of boiling solar material that rise up from below. After the material, or plasma, rises up into the granules, it sweeps out to the sides, and flows back down these intergranular lanes. The lanes are consequently believed to contain concentrated magnetic fields, the perfect place for the origin of these newly spotted magnetic loops. The very position and shape of the ultrafine loops, therefore, help confirm models of the sun's surface.

Goode and his colleagues did more than just categorize the size and shape of the loops, however. They also tracked the loops through time as they rose up into the sun's corona, a process that may help solve a persistent question in solar physics, namely why the sun's atmosphere, or corona is so hot.

Scientists in the early 1940s discovered that the sun's atmosphere is some thousand times hotter than its surface. Determining just what processes heat those gases up to millions of degrees has been a key research area ever since.

"There have been many suggestions over the years as to what mechanism can make the atmosphere a thousand times hotter than the surface of the sun," says Goode. "They basically come in two categories. The first is that there's some kind of continuous magnetic energy adding heat. The second is that there's an impulsive, intermittent movement that adds heat. And there are, of course, all kinds of variations and mixtures of each theme."

In this case, the appearance of the ultrafine loops seems to be correlated to intense magnetic field collisions. The largest groups of loops also corresponded to solar phenomena called Type II spicules, which some theories postulate contribute to coronal heating.

"We observe an impulsive event at the sun's surface, and this excites low-lying and higher-lying, wider loops almost simultaneously," says Goode. "It's just a correlation at this point, but for the first time we've observed something happen at the surface and we can track it up through heating of the corona. This doesn't answer the question of whether it's the only mechanism that heats the corona, but it certainly seems to be at least one mechanism."

In addition to the value of having seen such fine structures for the first time, Goode and his colleagues believe this is a great example of how the NST can coordinate with other instruments, such as an upcoming NASA Explorer called the Interface Region Imaging Spectrograph or IRIS, due to launch no earlier than December 2012. IRIS will focus exclusively on the area of the sun's atmosphere at the base of the corona, an area crucial for coronal heating. The NST's capabilities will mesh nicely with this since it can measure magnetic fields in the same regions IRIS will be observing.

For more information about the IRIS mission, visit:
 
 
NASA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.ccom
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!