Hola amigos: A VUELO DE UN QUINDE EL BLOG., La Agencia Espacial NASA, nos ha hecho llegar esta información....por un segundo año, NASA's Space Technology Mission
Directorate; busca propuestas para cargas útiles de tecnología suborbitales y los realces de capacidad de nave espacial que podrían ayudar a revolucionar futuras misiones espaciales.
Las tecnologías seleccionadas viajarán U.S. commercial suborbital vehicles and platforms, y atrás sobre vehículos estadounidenses comerciales suborbitales y plataformas, proporcionando oportunidades para probar antes de que ellos sean enviados para trabajar en el entorno implacable de espacio.
Los invito aleer la versión en inglés de la NASA........
WASHINGTON -- For a second year, NASA's Space Technology Mission
Directorate is seeking proposals for suborbital technology payloads and
spacecraft capability enhancements that could help revolutionize future
space missions.
Selected technologies will travel to the edge of space and back on U.S. commercial suborbital vehicles and platforms, providing opportunities for testing before they are sent to work in the unforgiving environment of space.
The Game Changing Opportunities in Technology Development research announcement seeks proposals for technology payloads, vehicle enhancements, onboard facilities and small spacecraft propulsion technologies that will help the agency advance technology development in the areas of exploration, space operations and other innovative technology areas relevant to NASA's missions. NASA's Flight Opportunities Program is sponsoring the solicitation and expects proposals from entrepreneurs, scientists, technologists, instrument builders, research managers, and vehicle builders and operators. This year, NASA has included a topic on small spacecraft propulsion technologies from the agency's Small Spacecraft Technology Program.
"Investing in transformative technology development is critical to enable NASA's future missions and benefits the greater American aerospace community," said James Reuther, deputy associate administrator for programs in NASA's Space Technology Mission Directorate. "NASA Space Tech's Game Changing Development and Flight Opportunities Programs are working with our partners from America's emerging suborbital flight community to foster frequent and predictable commercial access to near-space while allowing for cutting-edge technology development."
Following development, selected payloads will be made available to NASA's Flight Opportunities Program for pairing with appropriate commercial suborbital reusable launch service provider flights. In the case of small spacecraft propulsion technologies, there may be the potential for a direct orbital flight opportunity.
"This call will select innovators to develop novel technology payloads that will provide significant improvements over current state-of-the-art systems," said Stephen Gaddis, Game Changing Development Program manager at NASA's Langley Research Center in Hampton, Va.
Proposals are due June 17 and will be accepted from U.S. or non-U.S. organizations, including NASA centers, other government agencies, federally funded research and development centers, educational institutions, industry and nonprofit organizations.
NASA expects to make as many as 18 awards this summer with the majority of awards ranging in value between approximately $50,000 and $250,000 each. The total combined funding for this announcement is expected to be about $2 million, based on availability of funds.
The Game Changing Opportunities research announcement is available on NASA's Solicitation and Proposal Integrated Review and Evaluation System website:
Selected technologies will travel to the edge of space and back on U.S. commercial suborbital vehicles and platforms, providing opportunities for testing before they are sent to work in the unforgiving environment of space.
The Game Changing Opportunities in Technology Development research announcement seeks proposals for technology payloads, vehicle enhancements, onboard facilities and small spacecraft propulsion technologies that will help the agency advance technology development in the areas of exploration, space operations and other innovative technology areas relevant to NASA's missions. NASA's Flight Opportunities Program is sponsoring the solicitation and expects proposals from entrepreneurs, scientists, technologists, instrument builders, research managers, and vehicle builders and operators. This year, NASA has included a topic on small spacecraft propulsion technologies from the agency's Small Spacecraft Technology Program.
"Investing in transformative technology development is critical to enable NASA's future missions and benefits the greater American aerospace community," said James Reuther, deputy associate administrator for programs in NASA's Space Technology Mission Directorate. "NASA Space Tech's Game Changing Development and Flight Opportunities Programs are working with our partners from America's emerging suborbital flight community to foster frequent and predictable commercial access to near-space while allowing for cutting-edge technology development."
Following development, selected payloads will be made available to NASA's Flight Opportunities Program for pairing with appropriate commercial suborbital reusable launch service provider flights. In the case of small spacecraft propulsion technologies, there may be the potential for a direct orbital flight opportunity.
"This call will select innovators to develop novel technology payloads that will provide significant improvements over current state-of-the-art systems," said Stephen Gaddis, Game Changing Development Program manager at NASA's Langley Research Center in Hampton, Va.
Proposals are due June 17 and will be accepted from U.S. or non-U.S. organizations, including NASA centers, other government agencies, federally funded research and development centers, educational institutions, industry and nonprofit organizations.
NASA expects to make as many as 18 awards this summer with the majority of awards ranging in value between approximately $50,000 and $250,000 each. The total combined funding for this announcement is expected to be about $2 million, based on availability of funds.
The Game Changing Opportunities research announcement is available on NASA's Solicitation and Proposal Integrated Review and Evaluation System website:
Langley manages the Game Changing Development Program, and NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif., manages the Flight Opportunities Program for the agency's Space Technology Mission Directorate. For more information on the Game Changing Development activities and information on this solicitation for payloads, visit:
For more information about NASA's Flight Opportunities Program, visit:
NASA Taps the Power of Zombie Stars in Two-in-One Instrument
Neutron stars have been called the zombies of the cosmos. They shine
even though they’re technically dead, occasionally feeding on
neighboring stars if they venture too close. Interestingly, these
unusual objects, born when a massive star extinguishes its fuel and
collapses under its own gravity, also may help future space travelers
navigate to Mars and other distant destinations.
› Larger image
This artist’s rendition shows the NICER/SEXTANT payload that NASA recently selected as its next Explorer Mission of Opportunity. The 56-telescope payload will fly on the International Space Station. Credit: NASA
This artist’s rendition shows the NICER/SEXTANT payload that NASA recently selected as its next Explorer Mission of Opportunity. The 56-telescope payload will fly on the International Space Station. Credit: NASA
NASA recently selected a new mission called the Neutron-star Interior Composition Explorer (NICER) to not only reveal the physics that make neutron stars the densest objects in nature, but also to demonstrate a groundbreaking navigation technology that could revolutionize the agency’s ability to travel to the far reaches of the solar system and beyond.
The multi-purpose mission, also known as NICER/SEXTANT (Station Explorer for X-ray Timing and Navigation Technology), consists of 56 X-ray telescopes in a compact bundle, their associated silicon detectors, and a number of other advanced technologies. Both NASA’s Science Mission Directorate’s Explorers Program and the Space Technology Mission Directorate’s Game Changing Program are contributing to the mission’s development.
› Larger image
These nested shells of X-ray mirrors will fly on a new two-in-one instrument that will study neutron stars and demonstrate X-ray navigation. Credit: Pat Izzo
These nested shells of X-ray mirrors will fly on a new two-in-one instrument that will study neutron stars and demonstrate X-ray navigation. Credit: Pat Izzo
Credit: Flickr/Ayesha Garrett
The Latest Incarnation of Celestial-Based Navigation
As history has shown, there really is nothing new under the sun. Since the beginning of recorded history, if not before, humans have used the stars to find their way. In 2017 a team led by NASA astrophysicists and engineers plans to demonstrate a potentially game-changing technology that would use pulsars to help space travelers and scientific spacecraft navigate the far reaches of the solar system.
› Read more “It’s rare that you have an opportunity to fly a cross-cutting experiment,” said Principal Investigator Keith Gendreau, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., who is leading NICER/SEXTANT’s development. “The time is right for this experiment. This is one that we can do now.”
In addition to NASA Goddard scientists and engineers, the mission team includes the Massachusetts Institute of Technology and commercial partners, who are providing spaceflight hardware. The Naval Research Laboratory and universities across the United States, as well as in Canada and Mexico, are providing science expertise.
Space Station Bound
Slightly larger than a typical college dormitory refrigerator, NICER/SEXTANT will be deployed on the International Space Station (ISS) in 2017. It will fly as an external attached payload on one of the ISS ExPRESS Logistics Carriers, unpressurized platforms used for experiments and storage.
The X-ray instrument’s primary objective is to learn more about the interior composition of neutron stars, the remnants of massive stars that, after exhausting their nuclear fuel, exploded and collapsed into super-dense spheres about the size of New York City. Their intense gravity crushes an astonishing amount of matter — often more than 1.4 times the content of the sun or at least 460,000 Earths — into these city-sized balls, creating the densest objects known in the universe. Just one teaspoonful of neutron star matter would weigh a billion tons on Earth.
› Larger image
NICER/SEXTANT Principal Investigator Keith Gendreau holds an assembly of X-ray focusing mirrors similar to the type that will fly on his mission in 2017. Credit: Bill Hrybyk
› Larger image
NASA’s new Explorer Mission of Opportunity will study rapidly rotating neutron stars called pulsars. NASA’s Chandra X-ray Observatory captured this image of the Vela pulsar about 1,000 light years from Earth. Credit: NASA/CXC/University of Toronto/M. Durant, et al "A neutron star is right at the threshold of matter as it can exist — if it were compressed any further, it would collapse completely in on itself and become a black hole," said Zaven Arzoumanian, a NASA Goddard scientist serving as the deputy principal investigator on the mission. “We have no way of creating or studying this matter in any laboratory. There are many theories about what it is and how it behaves, but the only way to test our models and understand what happens to matter under such incredible pressures is to study neutron stars,” he added. ”The closest we come to simulating these conditions is in particle accelerators that smash atoms together at almost the speed of light. However, these collisions are not an exact substitute — they only last a split second, and they generate temperatures that are much higher than what's inside neutron stars."
Although the nuclear-fusion fires that sustained their parent stars are extinguished, neutron stars still shine with heat left over from their explosive formation, and from radiation generated by their magnetic fields that became intensely concentrated as the core collapsed.
Although neutron stars emit radiation across the spectrum, observing in the X-ray band offers the greatest insights into their structure, the ultimate stability of their pulses as precise clock “ticks,” and the high-energy, dynamic phenomena that they host, including starquakes, thermonuclear explosions, and the most powerful magnetic fields known in the universe.
NICER’s 56 telescopes will collect X-rays generated from its tremendously strong magnetic field and from hotspots located at the stars’ two magnetic poles. At these locations, the intense magnetic field emerges from the surface. Particles trapped in the magnetic field rain down and generate X-rays when they strike the surface. As the hotspots rotate into and out of our line of sight, we perceive a rise and fall in X-ray brightness.
This subgroup of pulsating neutron stars, called pulsars, rotate rapidly, emitting from their magnetic poles powerful beams of light that sweep around as the star spins, much like a lighthouse. At Earth, these beams are seen as flashes of light, blinking on and off at intervals from seconds down to milliseconds.
Because of their predictable pulsations — especially millisecond pulsars, which are the target of the navigation demonstration — “they are extremely reliable celestial clocks” and can provide high-precision timing just like the atomic clock signals supplied through the 26-satellite, military-operated Global Positioning System (GPS), an Earth-centric system that weakens the farther one travels out beyond Earth orbit and into the solar system, Arzoumanian said. “Pulsars, on the other hand, are accessible in virtually every conceivable flight regime, from low-Earth orbit to interplanetary to deepest space,” Gendreau added.
As a result, NICER/SEXTANT also will demonstrate the viability of pulsar-based navigation. “The hardware needed for neutron star science is identical to that needed for pulsar-based navigation,” Gendreau said. “In fact, the mission’s two goals share many of the same targets and the same operational concept. The differences are on the back end in terms of how the data will be used.”
Imagine
a technology that would allow space travelers to transmit gigabytes of
data per second over interplanetary distances or to navigate to Mars and
beyond using powerful beams of light emanating from rotating neutron
stars. The concept isn't farfetched. In fact, Goddard astrophysicists
Keith Gendreau and Zaven Arzoumanian plan to fly a multi-purpose
instrument on the International Space Station to demonstrate the
viability of two groundbreaking navigation and communication
technologies and, from the same platform, gather scientific data
revealing the physics of dense matter in neutron stars. Credit: NASA
To demonstrate the navigation technology’s viability, the NICER/SEXTANT payload will use its telescopes to detect X-ray photons within these powerful beams of light to estimate the arrival times of the pulses. With these measurements, the system will use specially developed algorithms to stitch together an on-board navigation solution.
If an interplanetary mission were equipped with such a navigational device, it would be able to calculate its location autonomously, independent of NASA’s Deep Space Network (DSN), Gendreau said. DSN, considered the most sensitive telecommunications system in the world, allows NASA to continuously observe and communicate with interplanetary spacecraft. However, like GPS, the system is Earth-centric. DSN-supplied navigational solutions also degrade the farther one travels out into the solar system. Furthermore, missions must share time on the network, Gendreau said.
“We’re excited about NICER/SEXTANT’s possibilities,” Gendreau added. “The experiment meets critical science objectives and is a stepping-stone for technology applications that meet a variety of NASA needs. It’s rare that you get an opportunity to do a cross-cutting experiment like this.”
Related Links:
› NICER/SEXTANT mission
› Goddard technology news
NASA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@gmail.com
ayabaca@hotmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario