Mi lista de blogs

domingo, 24 de abril de 2016

NASA: NASA Seeks Industry Ideas for an Advanced Mars Satellite .- NASA busca ideas de la industria para un Satélite Avanzado de Marte

Hola amigos: A VUELO DE UN QUINDE EL BLOG., La NASA está solicitando ideas de los sectores industriales tecnológicos de los  EE.UU. para diseños de un orbitador de Marte para el lanzamiento potencial en la década de 2020. El satélite proporcionará las comunicaciones avanzadas y de imagen, así como la exploración de la ciencia robótica, en apoyo de viaje de la NASA a Marte.
More information........

Mars

NASA is soliciting ideas from U.S. industry for designs of a Mars orbiter for potential launch in the 2020s. The satellite would provide advanced communications and imaging, as well as robotic science exploration, in support of NASA’s Journey to Mars.

The orbiter would substantially increase bandwidth communications and maintain high-resolution imaging capability. It also may use experimental cutting-edge technologies, such as high-power solar electric propulsion or an optical communications package, which could greatly improve transmission speed and capacity over radio frequency systems.

Under the direction of NASA’s Mars Exploration Program, the agency’s Jet Propulsion Laboratory (JPL) in Pasadena, California, is conducting pre-formulation planning for this possible orbiter mission. Pre-formulation plans include the procurement of industry studies for a solar-powered orbiting spacecraft. This effort seeks to take advantage of industry capabilities to improve deep space, solar electric propulsion-enabled orbiters to accommodate scientific instruments, demonstrate capability for rendezvous and capture, and advance telecommunications capabilities. 

“Our success in exploring Mars, to unravel the mysteries of the Red Planet, depends on having high bandwidth communication with Earth and overhead imaging,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington. “Currently, we depend on our orbiting science missions to perform dual service in making measurements and acting as communication relays, but we can’t depend on them to last forever. This new orbiter will use cutting-edge technology to revitalize our ability to continue to explore Mars and support transformative science, including a potential sample return mission in the future.”

JPL plans to award concept study subcontracts of $400,000 per subcontract in June. The concept studies for the spacecraft will be completed over a four-month period.

In response to an earlier request from NASA, the Mars Exploration Program formed an analysis group that proposed, in a 2015 report, possible science objectives for a Mars orbiter capable of replenishing and advancing the telecommunications and reconnaissance resources available at Mars.

NASA is studying how to implement this mission concept in concert with its international partners to the greatest extent possible. Historically, there have been significant international contributions to NASA Mars missions that include the Curiosity rover, Mars Reconnaissance Orbiter spacecraft and the Mars Atmosphere and Volatile Evolution Mission orbiter, both currently orbiting the Red Planet. The agency will seek such partnerships for this potential future orbiter mission, as well.

NASA is on an ambitious journey to Mars that includes sending humans to the Red Planet, and that work remains on track. Robotic spacecraft are leading the way for the Mars Exploration Program, with current missions, in addition to the planned launch of the Insight lander in 2018, and the design and build of the Mars 2020 rover.

To view the Mars orbiter solicitation/Federal Business Opportunities announcement, visit:


-end-
Dwayne Brown / Laurie Cantillo
Headquarters, Washington
202-358-1726 / 202-358-1077
dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov
Last Updated: April 21, 2016
Editor: Sarah Ramsey
Tags:  Journey to Mars,

NASA Targets May 2018 Launch of Mars InSight Mission


Artist's concept of InSight
NASA has set a new launch opportunity, beginning May 5, 2018, for the InSight mission to Mars. This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved.
Credits: NASA/JPL-Caltech

NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission to study the deep interior of Mars is targeting a new launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018.

InSight’s primary goal is to help us understand how rocky planets – including Earth – formed and evolved. The spacecraft had been on track to launch this month until a vacuum leak in its prime science instrument prompted NASA in December to suspend preparations for launch.

InSight project managers recently briefed officials at NASA and France's space agency, Centre National d'Études Spatiales (CNES), on a path forward; the proposed plan to redesign the science instrument was accepted in support of a 2018 launch.

“The science goals of InSight are compelling, and the NASA and CNES plans to overcome the technical challenges are sound," said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. "The quest to understand the interior of Mars has been a longstanding goal of planetary scientists for decades. We’re excited to be back on the path for a launch, now in 2018.”  

NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, will redesign, build and conduct qualifications of the new vacuum enclosure for the Seismic Experiment for Interior Structure (SEIS), the component that failed in December. CNES will lead instrument level integration and test activities, allowing the InSight Project to take advantage of each organization’s proven strengths. The two agencies have worked closely together to establish a project schedule that accommodates these plans, and scheduled interim reviews over the next six months to assess technical progress and continued feasibility. 

The cost of the two-year delay is being assessed. An estimate is expected in August, once arrangements with the launch vehicle provider have been made. 

The seismometer instrument's main sensors need to operate within a vacuum chamber to provide the exquisite sensitivity needed for measuring ground movements as small as half the radius of a hydrogen atom. The rework of the seismometer's vacuum container will result in a finished, thoroughly tested instrument in 2017 that will maintain a high degree of vacuum around the sensors through rigors of launch, landing, deployment and a two-year prime mission on the surface of Mars.

The InSight mission draws upon a strong international partnership led by Principal Investigator Bruce Banerdt of JPL. The lander's Heat Flow and Physical Properties Package is provided by the German Aerospace Center (DLR). This probe will hammer itself to a depth of about 16 feet (five meters) into the ground beside the lander.

SEIS was built with the participation of the Institut de Physique du Globe de Paris and the Swiss Federal Institute of Technology, with support from the Swiss Space Office and the European Space Agency PRODEX program; the Max Planck Institute for Solar System Research, supported by DLR; Imperial College, supported by the United Kingdom Space Agency; and JPL.

"The shared and renewed commitment to this mission continues our collaboration to find clues in the heart of Mars about the early evolution of our solar system," said Marc Pircher, director of CNES's Toulouse Space Centre.

The mission’s international science team includes researchers from Austria, Belgium, Canada, France, Germany, Japan, Poland, Spain, Switzerland, the United Kingdom and the United States.

JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. The InSight spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space Systems in Denver. It was delivered to Vandenberg Air Force Base, California, in December 2015 in preparation for launch, and returned to Lockheed Martin's Colorado facility last month for storage until spacecraft preparations resume in 2017.

NASA is on an ambitious journey to Mars that includes sending humans to the Red Planet, and that work remains on track. Robotic spacecraft are leading the way for NASA’s Mars Exploration Program, with the upcoming Mars 2020 rover being designed and built, the Opportunity and Curiosity rovers exploring the Martian surface, the Odyssey and Mars Reconnaissance Orbiter spacecraft currently orbiting the planet, along with the Mars Atmosphere and Volatile Evolution Mission (MAVEN) orbiter, which is helping scientists understand what happened to the Martian atmosphere.
NASA and CNES also are participating in ESA’s (European Space Agency's) Mars Express mission currently operating at Mars. NASA is participating on ESA’s 2016 and 2018 ExoMars missions, including providing telecommunication radios for ESA's 2016 orbiter and a critical element of a key astrobiology instrument on the 2018 ExoMars rover.

For addition information about the mission, visit:


More information about NASA's journey to Mars is available online at:


-end-
Dwayne Brown / Laurie Cantillo
Headquarters, Washington
202-358-1726 / 202-358-1077
dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.w.webster@jpl.nasa.gov

Pascale Bresson / Nathalie Journo
Centre National d'Études Spatiales, Paris
+33-1-44-76-75-39 / +33-5-61-27-39-11
pascale.bresson@cnes.fr / nathalie.journo@cnes.fr

Manuela Braun
German Aerospace Center (DLR)
+49 2203 601 3882
manuela.braun@dlr.de
Last Updated: March 9, 2016
Editor: Sarah Ramsey
Guillermo Gonzalo Sánchez Achutegui

No hay comentarios: