Hola amigos: A VUELO DE UN QUINDE EL BLOG., en el apasionante mundo del cosmos existen fenómenos cósmicos como el llamado: Magnetar, que ha preocupado mucho a los científicos espaciales para llegar a conocer su origen y parece que ya lo lograron:"...
Este descubrimiento permitió a los astrónomos reconstruir la historia de la vida de la estrella que permitió la formación del magnetar en lugar del esperado agujero negro [3]. En la primera etapa de este proceso, la estrella más masiva de la pareja comienza a quedarse sin combustible, transfiriendo sus capas externas a su compañera menos masiva — que está destinada a convertirse en magnetar — haciendo que gire cada vez más rápido. Esta rápida rotación parece ser el ingrediente esencial en la formación del campo magnético ultra-fuerte del magnetar.....al descubrir la EstrellaWesterlund 1-5... "
Asimismo agregan en su comentario....." ....."No es sólo que esta estrella tenga la alta velocidad esperada si está siendo impulsada por una explosión de supernova, sino que además parece imposible replicar, en una estrella individual, las condiciones de baja masa, alta luminosidad y abundancia de carbono en la composición — un pista que indica que debe haberse formado, originalmente, con una compañera binaria", añade Ben Ritchie (Open University), coautor del nuevo artículo.
Amigos los invito a leer ampliamente abajo el artículo facilitado por el Observatorio Europea Austral- ESO.......
Los magnetares son los extraños remanentes
superdensos de explosiones de supernovas. Son los imanes más potentes conocidos
en el universo — millones de veces más potentes que los imanes más fuertes de la
Tierra. Utilizando el telescopio VLT (Very Large Telescope) de ESO, un equipo de
astrónomos europeos cree haber hallado, por primera vez, a la estrella compañera
de un magnetar. Este descubrimiento ayuda a explicar cómo se forman los
magnetares — un enigma de hace 35 años — y por qué esta estrella particular no
colapsó en agujero negro tal y como esperarían los astrónomos.
Cuando una estrella masiva colapsa por su propia gravedad durante una
explosión de supernova, puede formar, o bien una estrella de
neutrones o un agujero negro. Los magnetares son una forma
inusual y muy exótica de estrella de neutrones. Como todos estos objetos
extraños, son pequeños y extraordinariamente densos — una cucharadita de materia
de estrella de neutrones tendría una masa de aproximadamente mil millones de
toneladas — pero también tienen campos magnéticos extremadamente potentes. Las
superficies de los magnetares liberan grandes cantidades de rayos gamma cuando
atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar
(starquake), consecuencia de las enormes tensiones que tienen lugar en
sus cortezas.
El cúmulo estelar Westerlund 1 [1],
situado a 16.000 años luz de la Tierra, en la constelación austral de Ara (el
Altar), alberga uno de las dos docenas de magnetares conocidos en la Vía Láctea.
Se llama CXOU J164710.2-455216 y ha intrigado enormemente a los astrónomos.
"En nuestro anterior trabajo (eso1034)
demostramos que el magnetar del cúmulo Westerlund 1 (eso0510) debe
haber nacido de la explosiva muerte de una estrella con unas 40 veces la masa
del Sol. Pero este hecho representa un problema en sí mismo, ya que se supone
que, tras morir, las estrellas tan masivas colapsan para formar agujeros negros,
no estrellas de neutrones. No entendíamos cómo podía haberse transformado en
magnetar", afirma Simon Clark, autor principal del artículo que plasma
estos resultados.
Los astrónomos propusieron una solución a este misterio. Sugirieron que el
magnetar se formó por las interacciones de dos estrellas muy masivas en órbita
una en torno a la otra, en un sistema binario tan compacto que encajaría dentro
de la órbita de la Tierra alrededor del Sol. Pero, hasta ahora, no se había
detectado ninguna estrella acompañante en la ubicación del magnetar en
Westerlund 1, así que los astrónomos utilizaron el VLT para buscarlo en otras
partes del cúmulo. Buscaron estrellas fugitivas —
objetos que escapan del cúmulo a grandes velocidades — que podría haber sido
expulsadas de la órbita por la explosión de supernova que formó al magnetar. Se
descubrió que una estrella, conocida como Westerlund 1-5 [2],
parecía encajar perfectamente con lo que buscaban.
"No es sólo que esta estrella tenga la alta velocidad esperada si está
siendo impulsada por una explosión de supernova, sino que además parece
imposible replicar, en una estrella individual, las condiciones de baja masa,
alta luminosidad y abundancia de carbono en la composición — un pista que indica
que debe haberse formado, originalmente, con una compañera binaria", añade
Ben Ritchie (Open University), coautor del nuevo artículo.
Este descubrimiento permitió a los astrónomos reconstruir la historia de la
vida de la estrella que permitió la formación del magnetar en lugar del esperado
agujero negro [3]. En la primera etapa de este proceso, la estrella más
masiva de la pareja comienza a quedarse sin combustible, transfiriendo sus capas
externas a su compañera menos masiva — que está destinada a convertirse en
magnetar — haciendo que gire cada vez más rápido. Esta rápida rotación parece
ser el ingrediente esencial en la formación del campo magnético ultra-fuerte del
magnetar.
En la segunda etapa, como resultado de esta transferencia de masa, la propia
compañera llega a ser tan masiva que, a su vez, desprende una gran cantidad de
la masa recientemente adquirida. Gran parte de esta masa se pierde, pero una
parte pasa de nuevo a la estrella original, la que todavía hoy vemos brillando y
conocemos como Westerlund 1-5.
"Este proceso de intercambio de material ha sido el que ha proporcionado
a Westerlund 1-5 su firma química única, y el que ha permitido que la masa de su
compañera encoja a niveles lo suficientemente bajos como para que nazca un
magnetar en lugar de un agujero negro — ¡una forma de pasarse la “patata
caliente” con consecuencias cósmicas!", concluye Francisco Najarro (Centro
de Astrobiología, España), miembro del equipo de investigación.
Por tanto, en la receta para formar un magnetar, parece que un ingrediente
fundamental es ser una de las componentes de una estrella doble. La rápida
rotación generada por la transferencia de masas entre las dos estrellas parece
necesaria para generar el campo magnético ultra fuerte y, posteriormente, una
segunda fase de transferencia de masa permite al futuro magnetar adelgazar lo
suficiente como para no colapsar en agujero negro en el momento de su
muerte.
Notas
[1] El cúmulo abierto Westerlund 1 fue descubierto en 1961
desde Australia por el astrónomo sueco Bengt Westerlund, que más tarde se
trasladó desde allí para convertirse en Director de ESO en Chile (1970-74). Este
cúmulo está detrás de una enorme nube interestelar de gas y polvo, que bloquea
la mayor parte de su luz visible. El factor de atenuación es de más de 100.000,
por eso ha llevado tanto tiempo descubrir la verdadera naturaleza de este cúmulo
particular.
Westerlund 1 es un laboratorio natural único para el estudio de la física
estelar extrema, ayudando a los astrónomos a descubrir cómo viven y mueren las
estrellas más masivas de la Vía Láctea. De sus observaciones, los astrónomos
deducen que este cúmulo extremo probablemente contiene no menos de 100.000 veces
la masa del Sol, y todas sus estrellas se encuentran dentro de una región menos
de 6 años luz. Westerlund 1 parece ser el cúmulo compacto joven más masivo
identificado hasta el momento en nuestra galaxia, la Vía Láctea.
Todas las estrellas analizadas hasta ahora en Westerlund 1 tienen masas de,
al menos, 30-40 veces la del Sol. Dado que este tipo de estrellas tienen una
vida muy corta — astronómicamente hablando — Westerlund 1 debe ser muy joven.
Los astrónomos determinan una edad de entre 3,5 y 5 millones de años. Westerlund
1 es claramente un cúmulo recién nacido en nuestra galaxia.
[2] El nombre completo de esta estrella es Cl * Westerlund 1 W
5.
[3] A medida que las estrellas envejecen, sus reacciones
nucleares cambiar su composición química — los elementos que alimentan las
reacciones se agotan y se acumulan los productos generados por las reacciones.
Esta huella química estelar es, primero, rica en hidrógeno y nitrógeno, pero
pobre en carbono, y sólo aumenta la cantidad de carbono en fases muy tardías de
la vida de las estrellas, momento en el que se reducen considerablemente el
hidrógeno y el nitrógeno — se cree que es imposible que estrellas individuales
sean ricas, simultáneamente, en hidrógeno, nitrógeno y carbono, cosa que ocurre
con Wd1-5.
Información adicional
La investigación que se presenta en esta nota de prensa de ESO aparecerá en
breve en la revista de investigación Astronomy and Astrophysics (“A
VLT/FLAMES survey for massive binaries in Westerlund 1: IV.Wd1-5 binary product
and a pre-supernova companion for the magnetar CXOU J1647-45” por J. S.
Clark et al.). El mismo equipo publicó un primer estudio de este objeto en 2006
(“A Neutron Star with a Massive Progenitor in Westerlund 1” by M. P.
Muno et al., Astrophysical Journal, 636, L41).
El equipo está compuesto por Simon Clark y Ben Ritchie (The Open University,
Reino Unido), Francisco Najarro (Centro de Astrobiología, España), Norbert
Langer (Universidad de Bonn, Alemania, y Universidad de Utrecht, Países Bajos) e
Ignacio Negueruela (Universidad de Alicante, España).
Los astrónomos utilizaron el instrumento FLAMES, instalado en el telescopio
VLT (Very Large Telescope) de ESO, en Paranal (Chile), para estudiar
las estrellas del cúmulo Westerlund 1.
ESO es la principal organización astronómica intergubernamental de Europa y
el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de
quince países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia,
Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y
Suiza. ESO desarrolla un ambicioso programa centrado en el diseño, construcción
y operación de poderosas instalaciones de observación terrestres que permiten a
los astrónomos hacer importantes descubrimientos científicos. ESO también
desarrolla un importante papel al promover y organizar la cooperación en
investigación astronómica. ESO opera en Chile tres instalaciones de observación
únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el
Very Large Telescope, el observatorio óptico más avanzado del mundo, y
dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo
Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio
de rastreo más grande del mundo, y el VST (VLT Survey Telescope,
Telescopio de Rastreo del VLT) es el telescopio más grande diseñado
exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de
un revolucionario telescopio, ALMA, el proyecto astronómico más grande en
desarrollo. Actualmente ESO está planificando el European Extremely Large
Telescope, E-ELT, el telescopio óptico y de infrarrojo cercano de 39
metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros
de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés),
que incluye a expertos en divulgación y comunicadores científicos de todos los
países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
Contactos
J. Miguel Mas Hesse
Centro de Astrobiología (CSIC-INTA)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es
Centro de Astrobiología (CSIC-INTA)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es
Simon Clark
The Open University
Milton Keynes, United Kingdom
Tlf.: +44 207 679 4372
Correo electrónico: jsc@star.ucl.ac.uk
The Open University
Milton Keynes, United Kingdom
Tlf.: +44 207 679 4372
Correo electrónico: jsc@star.ucl.ac.uk
Richard Hook
ESO, La Silla, Paranal and E-ELT Press Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org
ESO, La Silla, Paranal and E-ELT Press Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org
Imágenes
El cúmulo estelar Westerlund 1 y las posiciones
del magnetar y de la que, probablemente, fue su estrella compañera
Videos
Ver también
Esta es una traducción de la
nota de prensa de ESO eso1415.
ESO
Guillermo Gonzalo Sánchez Achutegui
No hay comentarios:
Publicar un comentario