Mi lista de blogs

miércoles, 13 de noviembre de 2019

CIENCIA : FÍSICA .- ASTRONOMÍA .- BBC Mundo Noticias .- Qué es la energía oscura y por qué constituye uno de los grandes misterios del universo................ La expansión del universo se está acelerando más de lo calculado (y los científicos no saben por qué)

Hola amigos: A VUELO DE UN QUINDE EL BLOG.,  la agencia de noticias BBC Mundo Noticias, nos trae una importante noticia científica sobre la Energía Oscura que tiende a la expansión del Universo, en cambio la materia oscura tiende a desarerarla. Aquí necesariamente topamos con la Teoría de la Relatividad de Einstein, y base a ello se creado un aparto llamado: "El Instrumento Espectroscópico de la Energía Oscura contiene un conjunto de 5.000 fibras ópticas, cada una de las cuales es controlada por un pequeño brazo robótico que las coloca en la posición correcta para recibir la luz de una galaxia. El DESI observará alrededor de 35 millones de galaxias para medir sus corrimientos al rojo. Los datos del DESI nos ayudarán a distinguir entre los dos posibles escenarios para el origen de la expansión acelerada del universo: la existencia de la energía oscura o la necesidad de modificar la relatividad general de Einstein. Los datos del DESI nos permitirán reconstruir con precisión la historia de expansión del universo y la tasa de formación de estructuras a lo largo de un período de 11.000 millones de años....."

https://www.bbc.com/mundo/noticias-47377878
Imagen del Telescopio Espacial Hubble de la Nebulosa de Carina, en la constelación Carina, a 7.500 años luz de distanciaDerechos de autor de la imagenNASA
Image captionLa aceleración de la expansión del universo no puede explicarse, en el contexto de la relatividad general de Einstein, sin la existencia de una forma de energía desconocida.
El mayor componente del universo en el que vivimos es un enigma.
Y es que los átomos que componen todo lo conocido, los planetas, las estrellas y a nosotros mismos, constituyen sólo el 5% del mismo.
El resto es lo que los científicos llaman energía oscura (la vasta mayoría) y materia oscura.
Los astrónomos tienen ahora un nuevo y potente instrumento para estudiar la primera, el Instrumento Espectroscópico de la Energía Oscura (DESI, por siglas en inglés).
Este permitirá realizar el mapa más detallado del universo tras observar unos 35 millones de galaxias en cinco años.
Pero ¿qué se sabe hasta ahora sobre la energía oscura y cómo logrará el DESI estudiarla?
BBC Mundo habló con uno de los expertos que llevarán a cabo la tarea, el astrónomo argentino Ariel Sánchez, investigador científico del Instituto Max Planck de Física Extraterrestre con sede en Garching, Alemania.
línea
La predicción inicial era que la expansión del universo que comenzó después del Big Bang se volvería más lenta debido a la gravedad. Pero se está acelerando. ¿Cómo se explica?
La evolución del universo en sus escalas más grandes está controlada por la gravedad.
Actualmente, nuestra mejor descripción de la gravedad está dada por la teoría de la relatividad general de Einstein.
Aplicando las ecuaciones de Einstein al universo como un todo se encuentran soluciones de universos dinámicos, es decir, que se expanden o contraen.
Ariel SánchezDerechos de autor de la imagenGENTILEZA ARIEL SÁNCHEZ
Image captionAriel Sánchez se doctoró en astronomía en la Universidad Nacional de Córdoba, en Argentina, y desde 2008 es investigador científico del Instituto Max Planck de Física Extraterrestre en Garching, Alemania.
Desde que Edwin Hubble realizó sus observaciones alrededor de 1930, sabemos que nuestro universo está en expansión.
De acuerdo a las ecuaciones de Einstein, la materia contenida en el universo tiende a desacelerar esa expansión.
Esto se debe a que la expansión del universo, que intenta aumentar la distancia entre dos puntos cualquiera en el espacio, debe luchar contra el efecto de la atracción gravitacional de la materia que contiene, que tiende a acercarlos.
A finales del siglo XX los astrónomos intentaron medir esta tasa de desaceleración de la expansión utilizando observaciones de supernovas en galaxias distantes y el resultado fue sorprendente.
La expansión del universo no está disminuyendo su ritmo, se está acelerando. Las distancias a galaxias lejanas aumentan a una tasa cada vez mayor.
¿Y eso indica la presencia de la energía oscura?
Ese resultado cambió drásticamente nuestra comprensión del universo.
En el contexto de la relatividad general de Einstein, esto no es posible si el universo sólo contiene materia.
Eso indica la existencia de una componente adicional, una forma de energía desconocida que posee presión negativa y contrarrestra el efecto atractivo de la gravedad, impulsando la expansión acelerada del universo.
Descifrar la naturaleza de esta componente, que denominamos energía oscura, es uno de los problemas abiertos más importantes de la física actual.
Edwin HubbleDerechos de autor de la imagenSCIENCE PHOTO LIBRARY
Image caption"Desde que Edwin Hubble realizó sus observaciones alrededor de 1930, sabemos que nuestro universo está en expansión".
¿Cómo se sabe que la energía oscura constituye gran parte del universo? ¿Y qué porcentaje es?
Uno de los objetivos de la cosmología es realizar un detallado inventario de la energía que contiene el universo, listando todas sus componentes y la fracción del total de energía que cada una representa.
Para lograrlo, utilizamos observaciones astronómicas de la distribución de materia y luz a través del espacio.
Gracias a estas observaciones sabemos que la edad del universo es cercana a los 14.000 millones de años, y que hace aproximadamente unos 4.000 millones de años su expansión comenzó a acelerarse.
Este punto corresponde al momento en la historia del universo en el que la energía oscura comenzó a dominar sobre la materia.
Esto indica que la energía oscura es actualmente el principal componente en este inventario cósmico y que constituye aproximadamente el 70% del total de la energía en el universo.
Telescopio Mayall del Observatorio Kitt Peak en ArizonaDerechos de autor de la imagenP. MARENFELD AND NOAO/AURA/NSF
Image captionEl Instrumento Espectroscópico de la Energía Oscura (DESI) se encuentra en el domo del telescopio Mayall, en el Observatorio Kitt Peak, en Arizona.
¿Cómo se diferencia la energía oscura de la materia oscura?
En el inventario, el siguiente componente en importancia es la materia oscura, ya que constituye alrededor del 25% del total de energía del universo.
La materia oscura es una forma de materia que no interactúa con la luz.
Su presencia sólo es detectable por sus efectos gravitacionales en la formación y evolución de estructuras en el universo, tales como galaxias y cúmulos de galaxias.
Hay numerosas evidencias observaciones de la existencia de la materia oscura.
La materia común, hecha de átomos, constituye menos del 5% del total de la energía del universo.
Y otros componentes como los neutrinos o los fotones tienen contribuciones mucho más pequeñas.
¿Qué propiedades tiene la materia oscura, que la hacen diferente de la energía oscura?
Aunque no se conoce exactamente la naturaleza de la materia oscura, las observaciones astronómicas nos permiten tener una buena idea de sus propiedades.
Al igual que la materia común, la materia oscura contribuye a desacelerar la expansión del universo; es decir, el efecto contrario al de la energía oscura.
Otra diferencia importante entre estos componentes es su distribución en el espacio.
La materia oscura exhibe fluctuaciones en su densidad que crecen con el tiempo, con zonas más densas adquiriendo cada vez más materia debido a su atracción gravitatoria.
La energía oscura, en cambio, parece seguir una distribución uniforme, con la misma densidad a través del espacio.
Stu Harris del Laboratorio del Laboratorio Nacional Lawrence BerkeleyDerechos de autor de la imagenMARILYN CHUNG/LAWRENCE BERKELEY NATIONAL LAB
Image captionEl DESI contiene 5.000 fibras ópticas, cada una de las cuales es controlada por un pequeño brazo robótico que las coloca en la posición correcta para recibir la luz de una galaxia.
La energía oscura será estudiada con un potente nuevo instrumento, el DESI. ¿Por qué se dice que contiene 5.000 minitelescopios?
El Instrumento Espectroscópico de la Energía Oscura contiene un conjunto de 5.000 fibras ópticas, cada una de las cuales es controlada por un pequeño brazo robótico que las coloca en la posición correcta para recibir la luz de una galaxia.
Está instalado en el telescopio Mayall del observatorio de Kitt Peak en Arizona, en Estados Unidos, y tiene cuatro metros de diámetro.
Su diseño permite cubrir en cada observación un gran campo en el cielo.
Y eso, junto con la posibilidad de observar 5.000 galaxias simultáneamente, lo convierte en una máquina perfecta para construir un gran catálogo en poco tiempo.
Proyectos anteriores han construido catálogos de galaxias similares, pero el DESI llevará estos esfuerzos a un nuevo nivel al observar unas 35 millones de galaxias en cinco años.
¿Cómo logrará el DESI capturar la luz de 5.000 galaxias en forma simultánea, y cómo permitirá esa luz medir sus distancias?
Cuando observamos una galaxia en el cielo no sabemos a qué distancia se encuentra de nosotros. Pero la expansión cósmica nos ayuda a inferirla.
Cuando las ondas de luz se propagan a través del espacio, la expansión del universo las "estira", cambiando su longitud de onda y volviéndola mas roja.
Esto se conoce como "corrimiento al rojo".
Si descomponemos la luz de las galaxias distantes en los colores que las componen, de forma similar a lo que puede hacerse con un prisma, podemos reconocer el efecto del corrimiento al rojo.
Interior del domo del telescopio Mayall en el Observatorio Kitt PeakDerechos de autor de la imagenMARILYN CHUNG/BERKELEY LAB
Image captionEl interior del domo del telescopio Mayall en el Observatorio Kitt Peak.
Mientras más lejana sea la galaxia, mayor será su corrimiento al rojo. De esta manera, podemos estimar la distancia a las galaxias.
El DESI observará alrededor de 35 millones de galaxias para medir sus corrimientos al rojo.
Junto con sus posiciones en el cielo, estas distancias nos permitirán construir un mapa tridimensional de la distribución de galaxias sobre un enorme volumen del universo
Un detalle importante es que mientras más lejana es una galaxia, más tiempo ha estado viajando su luz hacia nosotros.
Por lo tanto, al observar galaxias a distintas distancias de nosotros, podemos estudiar la evolución del universo a través del tiempo.
¿Cómo ayudará ese mapa a entender qué es la energía oscura?
Los datos del DESI nos permitirán reconstruir con precisión la historia de expansión del universo y la tasa de formación de estructuras a lo largo de un período de 11.000 millones de años.
Estos datos nos permitirán caracterizar las propiedades de la energía oscura con gran precisión.
Todos los datos de los que disponemos en la actualidad son coherentes con el modelo cosmológico estándar, en el cual la energía oscura corresponde a la "energía de vacío".
Esta es una energía de origen cuántico, pequeña pero irreducible, que es una propiedad del espacio mismo incluso en ausencia de materia.
Dicho componente estira continuamente el espacio, impulsando la expansión acelerada del universo.
De todas formas, podemos esperar una caracterización mucho más precisa de la energía oscura una vez que tengamos los datos del DESI, que nos acercarán un poco más a las respuestas a las grandes preguntas abiertas en cosmología.
Posicionadores robóticos con fibras ópticasDerechos de autor de la imagenMARILYN CHUNG/BERKELEY LAB
Image captionDESI cuenta con 10 estructuras como la que vemos en la foto. En cada una hay 500 posicionadores robóticos conectados a fibras ópticas que giran en forma independiente para captar la luz.
¿Por qué DESI ayudará a probar la teoría de la gravedad de Einstein?
En el contexto de la relatividad general, la expansión acelerada del universo implica la existencia de la energía oscura.
Alternativamente, esto podría interpretarse como el indicio de un problema en la teoría de Einstein, una evidencia de que no describe correctamente la forma en que la gravedad se comporta en escalas cosmológicas.
La distribución de galaxias en el universo que será observada por el DESI nos permitirá poner a prueba las predicciones de la relatividad general en escalas cosmológicas, mucho mayores que las utilizadas en otras pruebas.
Los datos del DESI nos ayudarán a distinguir entre los dos posibles escenarios para el origen de la expansión acelerada del universo: la existencia de la energía oscura o la necesidad de modificar la relatividad general de Einstein.
Albert EinsteinDerechos de autor de la imagenAFP
Image captionLos dos posibles escenarios para el origen de la expansión acelerada del universo son la existencia de la energía oscura o la necesidad de modificar la relatividad general de Einstein.
¿Cómo decidió dedicarse al estudio de la energía oscura?
Desde mi adolescencia supe que quería dedicarme a la cosmología.
El descubrimiento de la aceleración cósmica tuvo lugar poco después de que empezara mis estudios de grado.
La importancia de este descubrimiento, que fue reconocida con el Premio Nobel de Física de 2011, revolucionó el campo de la cosmología para convertirla en una de las áreas más dinámicas de la física.
Tuve la suerte de comenzar mi carrera a tiempo para ser parte de este desarrollo.
Me considero muy afortunado de poder contribuir con mi trabajo a la tarea de comprender nuestro universo en más detalle.
¿Qué siente cuando piensa en que vivimos en un universo del que solo conocemos el 5%?
Me genera una gran curiosidad.
El deseo de conocer nuestro universo y las leyes que lo controlan en más detalle es la principal motivación de mi trabajo y el de muchos de mis colegas.
línea
línea


Temas relacionados

Contenido relacionado

La expansión del universo se está acelerando más de lo calculado (y los científicos no saben por qué)

Pierina Pighi Bel (@PierinaPighi)

Ilustración de la expansión del universo.Derechos de autor de la imagenNASA
Image captionEl universo ha estado expandiéndose desde el Big Bang.
Las galaxias se están alejando unas de otras cada vez más... y más rápido.
Se distancian como si uno lanzara una moneda al aire y, en vez de caer de vuelta hacia uno, se dirigiera al espacio a una velocidad cada vez mayor, según el ejemplo que ponen algunos físicos.
Si algo tan extraño nos sucediera con una moneda, lo más probable sería que nos preguntemos sorprendidos: "¿Qué la está empujando lejos de nosotros?".
Esta es la interrogante que, de manera simplificada, se hacen los astrónomos sobre las galaxias y su progresiva separación, y que aún no pueden responder.
No obstante, en los últimos meses, algunos científicos han presentado distintas teorías relacionadas que tratan de resolver el misterio.

Constante inconstante

El ritmo de la expansión del cosmos se mide con un número que se conoce como Constante de Hubble, en honor al astrónomo Edwin Hubble, que en 1929 notó que cuanto más distante era una galaxia de nosotros, más rápido parecía alejarse.
La constante de Hubble puede medirse de dos maneras. Una se basa en la radiación proveniente del Big Bang (Fondo de Microondas Cósmico), y la otra, en la luz que emiten las supernovas (estrellas en explosión).
SupernovaDerechos de autor de la imagenGETTY IMAGES
Image captionLa luz de las supernovas sirve como referencia para calcular la expansión del universo.
El problema hoy en día es que si usan la radiación del Big Bang, los astrónomos obtienen una constante de Hubble (velocidad de expansión) menor a la que obtienen si observan la luz de las supernovas, dice Vivian Poulin, investigador de la Universidad Johns Hopkins, EE.UU., a BBC Mundo.
Los investigadores aseguran que los resultados provenientes de las supernovas son más precisos que los derivados de la radiación, según escribe el físico y periodista Dennis Overbye en un artículo publicado este lunes en The New York Times.
"Estos resultados son tan buenos que ahora (los científicos) discrepan" de las mediciones que arrojan una constante de Hubble menor, dice Overbye.
La diferencia entre ambos resultados sugiere que el universo se está expandiendo un 9% más rápido de lo que algunos científicos calculaban.
Ilustración del Big BangDerechos de autor de la imagenGETTY IMAGES
Image captionLa radiación que emitió el Big Bang puede medirse hasta nuestros días.
Aunque parece pequeña, esta discrepancia entre las fórmulas de los astrónomos es "bastante seria", escribe Paul Rincon, periodista especializado en ciencia de la BBC, en un artículo de enero de 2018.
Hasta ahora, los científicos no saben con seguridad a qué se debe que obtengan una mayor velocidad de expansión o, en otras palabras, qué cosa es lo que acelera la separación del universo.

Nuevas partículas

Pero tienen varias teorías para explicar el enigma, que implican la existencia de fenómenos físicos aún hipotéticos.
"La tasa de expansión del universo depende de la densidad de la energía de los diversos cuerpos que lo componen", indica Poulin a BBC Mundo.
Entonces, si el ritmo de expansión del cosmos es mayor que el que los científicos pueden explicar, quiere decir que hay una densidad de energía adicional o una partícula adicional que no están incluyendo en la ecuación.
GalaxiasDerechos de autor de la imagenGETTY IMAGES
Image captionLas galaxias se están alejando unas de otras cada vez más rápido.
Una de estas partículas podría ser un nuevo tipo de neutrino o "neutrino estéril", según dijo a BBC News en enero de 2018 el profesor Adam Riess, de la Universidad Johns Hopkins, EE.UU., y uno de los tres ganadores del Nobel de Física en 2011 por descubrir que la expansión del universo se está acelerando.
Los neutrinos o "partículas fantasmas" son partículas subatómicas sin carga eléctrica que interactúan de manera muy débil con la materia. Los científicos predicen tres tipos de neutrinos.
Si existiera, el neutrino estéril, que sería el cuarto, sería una partícula que no interactuaría con la materia, sino con la gravedad.
"Este hipotético neutrino adicional agregaría densidad de energía al universo, y por lo tanto aumentaría su tasa de expansión en los primeros tiempos. Esto cambiaría el valor de la constante de Hubble que inferiríamos", dice el doctor Poulin a BBC Mundo.

Energía oscura

La discrepancia también se ha atribuido a la "energía oscura" que compone aproximadamente el 68% del cosmos, pero que todavía no se sabe qué es exactamente.
Se cree que ejerce una fuerza de repulsión que hace que el universo se expanda.
Energía oscuraDerechos de autor de la imagenGETTY IMAGES
Image captionUna de las teorías es que la tasa mayor de expansión del universo se debe a la "energía oscura".
En enero, los investigadores Guido Risaliti, de la Universidad de Florencia, y Elisabeta Lusso, de la Universidad de Durham, Reino Unido, publicaron un estudio en la revista Nature que sugiere que la energía oscura no es estable, sino que "su densidad aumenta con el tiempo".
Como ya se sabe, a más densidad, cada vez mayor velocidad de expansión del universo.
Poulin y un equipo de la Universidad Johns Hopkins también creen que la aceleración de la expansión del universo se debe a la "energía oscura".
Pero estos investigadores la sitúan en los inicios del universo.
Es decir, habla de una "energía oscura temprana" que no necesariamente es igual a la actual, y que "decae como la radiación" antes de los 300.000 años del universo, según un estudio que publicaron en noviembre de 2018.
ilustración de un rostro en el espacioDerechos de autor de la imagenGETTY
Image captionEl origen del universo es uno de los grandes enigmas de la humanidad
"La 'energía oscura temprana' aumenta la tasa de expansión del universo en los primeros 300.000 años", explica Poulin a BBC Mundo. Esto permitiría que las mediciones actuales acierten con la expansión actual del universo.
Si alguna de estas teorías fuera cierta, dice Overbye en The New York Times"los científicos tendrían que reescribir la historia del origen y, tal vez, el destino del universo".
Línea
Ahora puedes recibir notificaciones de BBC Mundo. Descarga la nueva versión de nuestra app y actívalas para no perderte nuestro mejor contenido.

Temas relacionados

Contenido relacionado


BBC Mundo Noticias
Guillermo Gonzlao Sánchez Achutegui

No hay comentarios: