Chandra Captures Galaxy Sparkling in X-rays
The galaxy is officially named Messier 51 (M51) or NGC 5194, but often goes
by its nickname of the “Whirlpool Galaxy.” Like the Milky Way, the Whirlpool is
a spiral galaxy with spectacular arms of stars and dust. M51 is located 30
million light years from Earth, and its face-on orientation to Earth gives us a
perspective that we can never get of our own spiral galactic home.
By using Chandra, astronomers can peer into the Whirlpool to uncover things
that can only be detected in X-rays. In this new composite image, Chandra data
are shown in purple. Optical data from the Hubble Space Telescope are red, green
and blue.
Most of the X-ray sources are X-ray binaries (XRBs). These systems consist of
pairs of objects where a compact star, either a neutron star or, more rarely, a
black hole, is capturing material from an orbiting companion star. The infalling
material is accelerated by the intense gravitational field of the compact star
and heated to millions of degrees, producing a luminous X-ray source. The
Chandra observations reveal that at least ten of the XRBs in M51 are bright
enough to contain black holes. In eight of these systems the black holes are
likely capturing material from companion stars that are much more massive than
the sun.
Because astronomers have been observing M51 for about a decade with Chandra,
they have critical information about how X-ray sources containing black holes
behave over time. The black holes with massive stellar companions are
consistently bright over the ten years of Chandra observations. These results
suggest that the high-mass stars in these X-ray sources also have strong winds
that allow for a steady stream of material to flow onto the black hole.
A difference between the Milky Way and the Whirlpool galaxy is that M51 is in
the midst of merging with a smaller companion galaxy seen in the upper left of
the image. Scientists think this galactic interaction is triggering waves of
star formation. The most massive of the newly formed stars will race through
their evolution in a few million years and collapse to form neutron stars or
black holes. Most of the XRBs containing black holes in M51 are located close to
regions where stars are forming, showing their connection to the oncoming
galactic collision.
Previous studies of the Whirlpool Galaxy with Chandra revealed just over 100
X-ray sources. The new dataset, equivalent to about 900,000 seconds of Chandra
observing time, reveals nearly 500 X-ray sources. About 400 of these sources are
thought to be within M51, with the remaining either being in front of or behind
the galaxy itself.
Much of the diffuse, or fuzzy, X-ray emission in M51 comes from gas that has
been superheated by supernova explosions of massive stars.
The new Chandra observations were presented at the 224th meeting of the
American Astronomical Society in Boston, Mass. by Roy Kilgard of Wesleyan
University in Middletown, Conn. NASA's Marshall Space Flight Center in
Huntsville, Ala., manages the Chandra program for NASA's Science Mission
Directorate in Washington. The Smithsonian Astrophysical Observatory in
Cambridge, Mass., controls Chandra's science and flight operations.
Image credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical:
NASA/STScI
NASA
Guillermo Gonzalo Sánchez Achutegui
No hay comentarios:
Publicar un comentario