Close-up of olivine crystals seen inside a meteorite found on Earth that
originated from a partly melted Solar System asteroid. The yellow
olivine crystals are on the order of a few millimetres to centimetres in
size and are held together by an alloy of iron and nickel. In contrast,
the olivine crystals found in pristine comets, such as in the material
measured in the Beta Pictoris system by ESA’s Herschel space
observatory, are iron-poor but magnesium-rich.
Credits: J. Debosscher, KU Leuven
Credits: J. Debosscher, KU Leuven
Olivine crystals
|
Comet crystals found in a nearby planetary system
3 October 2012
Pristine material that matches comets in our own Solar System have been found in a dust belt around the young star Beta Pictoris by ESA’s Herschel space observatory.
Twelve-million-year-old Beta Pictoris resides just 63 light-years from Earth and hosts a gas giant planet along with a dusty debris disc that could, in time, evolve into a torus of icy bodies much like the Kuiper Belt found outside the orbit of Neptune in our Solar System.
Pristine material that matches comets in our own Solar System have been found in a dust belt around the young star Beta Pictoris by ESA’s Herschel space observatory.
Twelve-million-year-old Beta Pictoris resides just 63 light-years from Earth and hosts a gas giant planet along with a dusty debris disc that could, in time, evolve into a torus of icy bodies much like the Kuiper Belt found outside the orbit of Neptune in our Solar System.
Thanks to the unique observing capabilities of Herschel, the composition
of the dust in the cold outskirts of the Beta Pictoris system has been
determined for the first time.
Of particular interest was the mineral olivine, which crystallises out
of the protoplanetary disc material close to newborn stars and is
eventually incorporated into asteroids, comets and planets.
“As far as olivine is concerned, it comes in different ‘flavours’,”
explains Ben de Vries from KU Leuven and lead author of the study
reported in Nature.
“A magnesium-rich variety is found in small and primitive icy bodies
like comets, whereas iron-rich olivine is typically found in large
asteroids that have undergone more heating, or ‘processing’.”
Infrared view of the Beta Pictoris solar system, obtained by combining
data from the ADONIS instrument on ESO’s 3.6 m telescope (outer regions)
and the NACO instrument on one of the 8.2 m units of ESO’s Very Large
Telescope (inner region), and then subtracting the overpowering glare of
the central star. The image shows a planet orbiting at roughly the same
distance from Beta Pictoris as Saturn is from our own Sun, and a
prominent dust disc in the outer reaches of the system.
New observations from ESA’s Herschel space telescope have found
magnesium-rich olivine crystals in the disc that likely originated from
collisions between comets: the dust shares the same compositional
characteristics as in several comets in our Solar System. Furthermore,
the observation of these olivines in the outer dust disc suggest that
they have been transported from their birthplace close to the central
star, since they cannot form under the cold conditions found further
out.
Credits: ESO/A-M. Lagrange et al.
Credits: ESO/A-M. Lagrange et al.
Herschel detected the pristine magnesium-rich variety in the Beta
Pictoris system at 15–45 astronomical units (AUs) from the star, where
temperatures are around –190ºC.
For comparison, Earth lies at 1 AU from our Sun and the Solar System’s
Kuiper Belt extends from the orbit of Neptune at about 30 AU out to 50
AU from the Sun.
The Herschel observations allowed astronomers to calculate that the
olivine crystals make up around 4% of the total mass of the dust found
in this region.
In turn, this finding led them to conclude that the olivine was
originally bound up inside comets and released into space by collisions
between the icy objects.
“The 4% value is strikingly similar to that of Solar System comets
17P/Holmes and 73P/Schwassmann-Wachmann 3, which contain 2–10%
magnesium-rich olivine,” says Dr de Vries.
“Since olivine can only crystallise within about 10 AU of the central
star, finding it in a cold debris disc means that it must have been
transported from the inner region of the system to the outskirts.”
The ‘radial mixing’ transport mechanism is known from models of the
evolution of swirling protoplanetary discs as they condense around new
stars.
The mixing is stimulated in varying amounts by winds and heat from the
central star pushing materials away, along with temperature differences
and turbulent motion created in the disc during planet formation.
“Our findings are an indication that the efficiency of these transport
processes must have been similar between the young Solar System and
within the Beta Pictoris system, and that these processes are likely
independent of the detailed properties of the system,” says Dr de Vries.
Indeed, Beta Pictoris is over one and a half times the mass of our Sun,
eight times as bright, and its planetary system architecture is
different to our own Solar System today.
“Thanks to Herschel, we were able to measure the properties of pristine
material left over from the initial planet-building process in another
solar system with a precision that is comparable to what we could
achieve in the laboratory if we had the material here on Earth,” says
ESA’s Herschel project scientist Göran Pilbratt.
Notes for Editors
Notes for Editors
ESA
Guillermo Gonzalo Sánchez Achutegui
ayabaca@hotmail.com
ayabaca@gmail.com
ayabaca@yahoo.com
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario