26 de Febrero de 2024
Cuando una estrella como nuestro Sol llega al final de su vida, puede “tragarse” los planetas circundantes y los asteroides que nacieron con ella. Ahora, utilizando el Very Large Telescope (VLT) del Observatorio Europeo Austral (ESO), en Chile, un equipo de investigación ha detectado, por primera vez, una firma única de este proceso: una cicatriz impresa en la superficie de una estrella enana blanca. Los resultados se publican hoy en The Astrophysical Journal Letters.
Cuando una estrella como nuestro Sol llega al final de su vida, puede “tragarse” los planetas circundantes y los asteroides que nacieron con ella. Ahora, utilizando el Very Large Telescope (VLT) del Observatorio Europeo Austral (ESO), en Chile, un equipo de investigación ha detectado, por primera vez, una firma única de este proceso: una cicatriz impresa en la superficie de una estrella enana blanca. Los resultados se publican hoy en The Astrophysical Journal Letters.
"Se sabe que algunas enanas blancas (los restos ardientes de estrellas como nuestro Sol que se van enfriando lentamente) canibalizan partes de sus sistemas planetarios. Ahora hemos descubierto que el campo magnético de la estrella juega un papel clave en este proceso, dejando una cicatriz en la superficie de la enana blanca", afirma Stefano Bagnulo, astrónomo del Observatorio y Planetario de Armagh, en Irlanda del Norte (Reino Unido) y autor principal del estudio.
La cicatriz que el equipo observó es una concentración de metales impresa en la superficie de la enana blanca WD 0816-310, el remanente del tamaño de la Tierra de una estrella similar, pero algo más grande que nuestro Sol. "Hemos demostrado que estos metales se originan a partir de un fragmento planetario tan grande o posiblemente más grande que Vesta, que tiene unos 500 kilómetros de diámetro y es el segundo asteroide más grande del Sistema Solar", declara Jay Farihi, profesor del University College de Londres (Reino Unido) y coautor del estudio.
Las observaciones también proporcionaron pistas sobre cómo se formó esa cicatriz metálica en la estrella. El equipo descubrió que la fuerza en la señal que detectaba los metales cambiaba a medida que la estrella giraba, lo cual sugiere que los metales, en lugar de extenderse uniformemente, se concentran en un área específica de la superficie de la enana blanca. También descubrieron que estos cambios estaban sincronizados con cambios en el campo magnético de la enana blanca, lo que indica que esta cicatriz metálica se encuentra en uno de sus polos magnéticos. En conjunto, estas pistas señalan que el campo magnético canalizó metales hacia la estrella, creando la cicatriz [1].
"Sorprendentemente, el material no se mezcló uniformemente sobre la superficie de la estrella, como predice la teoría. Por el contrario, esta cicatriz es como un parche concentrado de material planetario que se ha mantenido en ese lugar por el efecto del mismo campo magnético que guio la caída de los fragmentos hacia la superficie", dice el coautor John Landstreet, profesor de la Universidad de Western Ontario (Canadá), que también tiene filiación con el Observatorio y Planetario de Armagh. "Antes no se había visto nada como esto".
Para llegar a estas conclusiones, el equipo utilizó un instrumento multifunción instalado en el VLT llamado FORS2, que les permitió detectar la cicatriz de metales y hacer la conexión con el campo magnético de la estrella. "ESO tiene la combinación única de capacidades necesarias para observar objetos débiles, como las enanas blancas, y medir con sensibilidad los campos magnéticos estelares", declara Bagnulo. Para confirmar sus hallazgos, en su estudio el equipo también se basó en datos de archivo del instrumento X-shooter (instalado en el VLT).
Aprovechando el poder de observaciones como estas, la comunidad astronómica puede revelar la composición a grandes rasgos de los exoplanetas, planetas que orbitan otras estrellas fuera del Sistema Solar. Este estudio único también muestra cómo los sistemas planetarios pueden permanecer dinámicamente activos, incluso después de su "muerte".
Notas
Información adicional
Este trabajo de investigación se ha presentado en un artículo titulado “Discovery of magnetically guided metal accretion onto a polluted white dwarf”, que aparece en The Astrophysical Journal Letters (doi: 10.3847 / 2041-8213 / ad2619).
El equipo está compuesto por Stefano Bagnulo (Observatorio y Planetario de Armagh, Reino Unido [Armagh]); Jay Farihi (Departamento de Física y Astronomía, University College de Londres, Reino Unido); John D. Landstreet (Armagh; Departamento de Física y Astronomía, Universidad del Oeste de Ontario, Canadá); y Colin P. Folsom (Observatorio de Tartu, Universidad de Tartu, Estonia).
El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
- Artículo científico
- Fotos del VLT
- Para periodistas: suscríbete para recibir nuestros comunicados embargados y en tu idioma
- Para científicos/as: ¿tienes una historia? Presenta tu investigación
Contactos
Connect with ESO on social media
No hay comentarios:
Publicar un comentario