Hola amigos: A VUELO DE UN QUINDE EL BLOG., la Agencia Espacial NASA, nos informa sobre la misión de .....MAVEN : "Tres puntos de vista de una atmósfera de escapar, obtenidos por la MAVEN Imaging ultravioleta Espectrógrafo. Mediante la observación de todos los productos de la descomposición de agua y dióxido de carbono, el equipo de detección remota de MAVEN puede caracterizar los procesos que conducen a la pérdida de la atmósfera de Marte.......
La nave, que entró en la órbita de Marte 21 de septiembre, ahora está bajando su órbita y probar sus instrumentos. MAVEN fue lanzado a Marte en noviembre de 2013, para ayudar a resolver el misterio de cómo el planeta rojo perdió la mayor parte de su atmósfera.........
"Todos los instrumentos están mostrando la calidad de datos que es mejor de lo previsto en esta primera etapa de la misión", dijo Bruce Jakosky, MAVEN investigador principal de la Universidad de Colorado, Boulder. "Todos los instrumentos ahora se han convertido en - aunque aún no está totalmente desprotegido -.. Y están funcionando nominalmente está resultando ser una nave espacial de fácil y sencillo de volar, al menos hasta ahora; realmente parece como si nos dirigimos para una misión científica emocionante "..................
NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has provided
scientists their first look at a storm of energetic solar particles at Mars,
produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen, and
carbon coronas surrounding the Red Planet, and yielded a comprehensive map of
highly-variable ozone in the atmosphere underlying the coronas.
The spacecraft, which entered Mars' orbit Sept. 21, now is lowering its orbit
and testing its instruments. MAVEN was launched to Mars in November 2013, to
help solve the mystery of how the Red Planet lost most of its atmosphere.
"All the instruments are showing data quality that is better than anticipated
at this early stage of the mission," said Bruce Jakosky, MAVEN Principal
Investigator at the University of Colorado, Boulder. "All instruments have now
been turned on -- although not yet fully checked out -- and are functioning
nominally. It's turning out to be an easy and straightforward spacecraft to fly,
at least so far. It really looks as if we're headed for an exciting science
mission."
Solar energetic particles (SEPs) are streams of high-speed particles blasted
from the sun during explosive solar activity like flares or coronal mass
ejections (CMEs). Around Earth, SEP storms can damage the sensitive electronics
on satellites. At Mars, they are thought to be one possible mechanism for
driving atmospheric loss.
A solar flare on Sept. 26 produced a CME that was observed by NASA satellites
on both sides of the sun. Computer models of the CME propagation predicted the
disturbance and the accompanying SEPs would reach Mars on Sept. 29. MAVEN's
Solar Energetic Particle instrument was able to observe the onset of the event
that day.
"After traveling through interplanetary space, these energetic particles of
mostly protons deposit their energy in the upper atmosphere of Mars," said SEP
instrument lead Davin Larson of the Space Sciences Laboratory at the University
of California, Berkeley. "A SEP event like this typically occurs every couple
weeks. Once all the instruments are turned on, we expect to also be able to
track the response of the upper atmosphere to them."
The hydrogen and oxygen coronas of Mars are the tenuous outer fringe of the
planet's upper atmosphere, where the edge of the atmosphere meets space. In this
region, atoms that were once a part of carbon dioxide or water molecules near
the surface can escape to space. These molecules control the climate, so
following them allows us to understand the history of Mars over the last four
billion years and to track the change from a warm and wet climate to the cold,
dry climate we see today. MAVEN observed the edges of the Martian atmosphere
using the Imaging Ultraviolet Spectrograph (IUVS), which is sensitive to the
sunlight reflected by these atoms.
"With these observations, MAVEN's IUVS has obtained the most complete picture
of the extended Martian upper atmosphere ever made," said MAVEN Remote Sensing
Team member Mike Chaffin of the University of Colorado, Boulder. "By measuring
the extended upper atmosphere of the planet, MAVEN directly probes how these
atoms escape to space. The observations support our current understanding that
the upper atmosphere of Mars, when compared to Venus and Earth, is only
tenuously bound by the Red Planet's weak gravity."
IUVS also created a map of the atmospheric ozone on Mars by detecting the
absorption of ultraviolet sunlight by the molecule.
"With these maps we have the kind of complete and simultaneous coverage of
Mars that is usually only possible for Earth," said MAVEN Remote Sensing Team
member Justin Deighan of the University of Colorado, Boulder. "On Earth, ozone
destruction by refrigerator CFCs is the cause of the polar ozone hole. On Mars,
ozone is just as easily destroyed by the byproducts of water vapor breakdown by
ultraviolet sunlight. Tracking the ozone lets us track the photochemical
processes taking place in the Martian atmosphere. We'll be exploring this in
more complete detail during MAVEN's primary science mission."
There will be about two weeks of additional instrument calibration and
testing before MAVEN starts its primary science mission. This includes an
end-to-end test to transmit data between NASA's Curiosity rover on the surface
of Mars and Earth using the MAVEN mission's Electra telecommunications relay.
The mission aims to start full science gathering in early to mid-November.
MAVEN's principal investigator is based at the University of Colorado's
Laboratory for Atmospheric and Space Physics. The university provided two
science instruments and leads science operations, as well as education and
public outreach, for the mission. The University of California at Berkeley's
Space Sciences Laboratory also provided four science instruments for the
mission. NASA's Goddard Space Flight Center in Greenbelt, Maryland manages the
MAVEN project and provided two science instruments for the mission. Lockheed
Martin built the spacecraft and is responsible for mission operations. NASA's
Jet Propulsion Laboratory in Pasadena, California provides navigation and Deep
Space Network support, as well as the Electra telecommunications relay hardware
and operations.
For more about MAVEN, visit:
NASA
Guillermo Gonzalo Sánchez Achutegui
Inscríbete en el Foro del blog y participa : A Vuelo De Un Quinde - El Foro!
No hay comentarios:
Publicar un comentario